On One Nonlinear Boundary-Value Problem in Kinetic Theory of Gases
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 3, pp. 320-327 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, the solvability of one nonlinear boundary-value problem arising in kinetic theory of gases is studied. We prove the existence of global solvability of a boundary-value problem in the Sobolev space $W_{\infty}^1(\mathbb{R}^+).$ The limit of the solution is found by using some a'priori estimations. For the case of power nonlinearity, the uniqueness of the solution in a certain class of functions is proved. Some examples illustrating the obtained results are given.
@article{JMAG_2014_10_3_a3,
     author = {A. Kh. Khachatryan and Kh. A. Khachatryan and T. H. Sardaryan},
     title = {On {One} {Nonlinear} {Boundary-Value} {Problem} in {Kinetic} {Theory} of {Gases}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {320--327},
     year = {2014},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a3/}
}
TY  - JOUR
AU  - A. Kh. Khachatryan
AU  - Kh. A. Khachatryan
AU  - T. H. Sardaryan
TI  - On One Nonlinear Boundary-Value Problem in Kinetic Theory of Gases
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2014
SP  - 320
EP  - 327
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a3/
LA  - en
ID  - JMAG_2014_10_3_a3
ER  - 
%0 Journal Article
%A A. Kh. Khachatryan
%A Kh. A. Khachatryan
%A T. H. Sardaryan
%T On One Nonlinear Boundary-Value Problem in Kinetic Theory of Gases
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2014
%P 320-327
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a3/
%G en
%F JMAG_2014_10_3_a3
A. Kh. Khachatryan; Kh. A. Khachatryan; T. H. Sardaryan. On One Nonlinear Boundary-Value Problem in Kinetic Theory of Gases. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 3, pp. 320-327. http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a3/

[1] C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New York, 1988 | MR | Zbl

[2] M. M. R. Williams, Mathematical Methods in Particle Transport Theory, Butterworth, London, 1971

[3] C. Villani, “Cereignami's Conjecture is Sometimes True and Always Almost True Communications in Mathematical Physics”, Israel J. Math., 234:3 (2003), 455–490 | MR | Zbl

[4] A. Kh. Khachatryan, Kh. A. Khachatryan, “On an Integral Equation with Monotonic Nonlinearity”, Memoirs on Differential Equations and Mathematical Physics, 51 (2010), 59–72 | MR | Zbl

[5] A. Kh. Khachatryan, Kh. A. Khachatryan, “Qualitative Difference between Solutions for a Model of the Boltzmann Equation in the Linear and Nonlinear Cases”, J. Theor. Math. Phys., 172:3 (2012), 1315–1320 | DOI | Zbl

[6] N. B. Engibarian, A. Kh. Khachatryan, “Exact Linearization of the Sliding Problem for a Dilute Gas in the Bhatnagar–Gross–Krook model”, J. Theor. Math. Phys., 125:2 (2000), 239–342 | MR