Refinement of Isoperimetric Inequality of Minkowski with the Account of Singularities in Boundaries of Intrinsic Parallel Bodies
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 3, pp. 309-319 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following inequalities are proved: \begin{eqnarray*} S^n(A,B)\geq n^n\sum\limits_{i=0}^{k-1} V(B_{A_i})\left( V^{n-1}(A_i) - V^{n-1}(A_{i+1}) \right) +S^n(A_{-T}(B),B), \end{eqnarray*} \begin{eqnarray*} S^n(A,B)\geq n^n\int\limits_{0}^{T} g(t) df(t) +S^n(A_{-T}(B),B), \end{eqnarray*} \begin{eqnarray*} S^n(A,B)\geq n^n\int\limits_{0}^{q} g(t) df(t) +S^n(A_{-q}(B),B), \end{eqnarray*} where $V(A)$, $V(B)$ stand for the volumes of convex bodies $A$ and $B$ in $\mathbb R^n$ ($n\geq 2$), $S(A,B)$ denotes the area of the surface of the body $A$ relative to the body $B$, $q$ is the capacity factor of the body $B$ with respect to the body $A$, $A_i = A_{-t_i}(B) = A / (t_iB)$ is the inner body parallel to the body $A$ with respect to the body $B$ at a distance $t_i$, $0=t_0 < t_1 <\ldots< t_i< \ldots < t_{k-1}, $B_{A_i}$ is a shape body of $A_i$ relative to $B$, $g(t) = V(B_{A_{-t}(B)})$, $f(t) = - V^{n-1}( A_{-t}(B))$, $\int\limits_{0}^{T} g(t) df(t) $ is the Riemann–Stieltjes integral of the function $g(t)$ by the function $f(t)$, and $\int\limits_{0}^{q} g(t) df(t) = \lim\limits_{T\to q} \int\limits_{0}^{T} g(t) df(t)$.
@article{JMAG_2014_10_3_a2,
     author = {V. I. Diskant},
     title = {Refinement of {Isoperimetric} {Inequality} of {Minkowski} with the {Account} of {Singularities} in {Boundaries} of {Intrinsic} {Parallel} {Bodies}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {309--319},
     year = {2014},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a2/}
}
TY  - JOUR
AU  - V. I. Diskant
TI  - Refinement of Isoperimetric Inequality of Minkowski with the Account of Singularities in Boundaries of Intrinsic Parallel Bodies
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2014
SP  - 309
EP  - 319
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a2/
LA  - en
ID  - JMAG_2014_10_3_a2
ER  - 
%0 Journal Article
%A V. I. Diskant
%T Refinement of Isoperimetric Inequality of Minkowski with the Account of Singularities in Boundaries of Intrinsic Parallel Bodies
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2014
%P 309-319
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a2/
%G en
%F JMAG_2014_10_3_a2
V. I. Diskant. Refinement of Isoperimetric Inequality of Minkowski with the Account of Singularities in Boundaries of Intrinsic Parallel Bodies. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 3, pp. 309-319. http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a2/

[1] K. Leichtweiss, Konvexe Mengen, Hochschulbucher fur Mathematik, 81, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980 (German) | MR | Zbl

[2] T. Bonnesen, W. Fenchel, Theory of Convex Bodies, BSC Associates, Moscow, Idaho, 1987 | MR

[3] H. Busemann, Convex Surfaces, Interscience Tracts in Pure and Applied Mathematics, 6, Interscience Publishers, New York–London, 1958 | MR | Zbl

[4] A. D. Alexandrov, Selected Works, v. 1, Geometry and Applications, Nauka, Novosibirsk, 2006 (Russian) | MR | Zbl

[5] V. I. Diskant, “Refinements of Isoperimetric Inequality and Stability Theorems in the Theory of Convex Bodies”, Modern Problems of Geometry and Analysis, 14 (1989), 98–132 (Russian) | MR | Zbl

[6] H. Hadwiger, Vorlesungen uber Inhalt, Oberflache und Isoperimetrie, Die Grundlehren der Mathematischen Wissenschaften, 93, Springer–Verlag, Berlin–Gottingen–Heidelberg, 1957 (German) | MR | Zbl

[7] V. I. Diskant, “The Behavior of Izoperemetric Difference at the Transition to a Parallel Body and a Refinement of the Generalized Inequality of Hadwiger”, Mat. Fiz., Anal., Geom., 10:1 (2003), 40–48 | MR | Zbl

[8] I. P. Natanson, Theory of Functions of a Real Variable, F. Unger Publishing Co, New York, 1964 | MR | Zbl