The Warped Product of Hamiltonian Spaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 3, pp. 300-308 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the geometric properties of warped product Hamiltonian spaces are studied. It is shown there is a close geometrical relation between a warped product Hamiltonian space and its base Hamiltonian manifolds. For example, it is proved that for nonconstant warped function $f$, the Sasaki lifted metric $G$ of Hamiltonian warped product space is bundle-like for its vertical foliation if and only if based Hamiltonian spaces are pseudo-Riemannian manifolds.
@article{JMAG_2014_10_3_a1,
     author = {H. Attarchi and M. M. Rezaii},
     title = {The {Warped} {Product} of {Hamiltonian} {Spaces}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {300--308},
     year = {2014},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a1/}
}
TY  - JOUR
AU  - H. Attarchi
AU  - M. M. Rezaii
TI  - The Warped Product of Hamiltonian Spaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2014
SP  - 300
EP  - 308
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a1/
LA  - en
ID  - JMAG_2014_10_3_a1
ER  - 
%0 Journal Article
%A H. Attarchi
%A M. M. Rezaii
%T The Warped Product of Hamiltonian Spaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2014
%P 300-308
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a1/
%G en
%F JMAG_2014_10_3_a1
H. Attarchi; M. M. Rezaii. The Warped Product of Hamiltonian Spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 3, pp. 300-308. http://geodesic.mathdoc.fr/item/JMAG_2014_10_3_a1/

[1] Y. Alipour-Fakhri, M. M. Rezaii, “The Warped Sasaki–Matsumoto Metric and Bundle-like Condition”, J. Math. Phys., 51 (2010), 122701, 13 pp. | DOI | MR

[2] A. Bejancu, H. R. Farran, Foliations and Geometric Structures, Springer-Verlag, Netherlands, 2006 | MR | Zbl

[3] R. Bishop, B. O'Neill, “Manifolds of Negative Curvature”, Trans. Amer. Math. Soc., 46 (1969), 1–49 | DOI | MR

[4] A. B. Hushmandi, M. M. Rezaii, “On Warped Product Finsler Spaces of Landsberg Type”, J. Math. Phys., 52 (2011), 093506, 17 pp. | DOI | MR | Zbl

[5] L. Kozma, I. R. Peter, C. Varga, “Warped Product of Finsler Manifolds”, Ann. Univ. Sci. Budapest, 44 (2001), 157–170 | MR | Zbl

[6] R. Miron, M. Anastasiei, Vector Bundles and Lagrange Spaces with Applications to Relativity, Balkan Society of Geometers monographs and textbooks, 1, Geometry Balkan Press, 1997 | MR

[7] R. Miron, M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications, FTPH, 59, Kluwer Acad. Publ., 1994 | MR | Zbl

[8] R. Miron, D. Hrimiuc, H. Shimada, S. V. Sabau, The Geometry of Hamilton and Lagrange Spaces, Kluwer Acad. Publ., New York, 2002 | MR

[9] P. Molino, Riemannian Foliations, Progress in Math., Birkhauser, Boston, 1988 | MR | Zbl

[10] B. O'Neill, Semi-Riemannian Geometry with Application to Relativity, Academic Press, New York, 1983 | MR | Zbl

[11] M. M. Rezaii, Y. Alipour-Fakhri, “On Projectively Related Warped Product Finsler Manifolds”, Int. J. Geom. Methods Modern Phys., 8 (2011), 953–967 | DOI | MR | Zbl