Automorphisms of Riemann–Cartan Manifolds with Semi-Symmetric Connection
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 2, pp. 233-239
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the maximum dimension of the Lie group of automorphisms of a Riemann–Cartan manifold $(M,g,\tilde{\nabla})$ is $\frac{n(n-1)}{2}+1$, where $M$ is a smooth $n$-dimensional manifold, $g$ is a Riemannian or semi-Riemannian metric on $M$, $\tilde{\nabla }$ is a semi-symmetric connection.
@article{JMAG_2014_10_2_a3,
author = {V. I. Panzhensky},
title = {Automorphisms of {Riemann{\textendash}Cartan} {Manifolds} with {Semi-Symmetric} {Connection}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {233--239},
year = {2014},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_2_a3/}
}
V. I. Panzhensky. Automorphisms of Riemann–Cartan Manifolds with Semi-Symmetric Connection. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 2, pp. 233-239. http://geodesic.mathdoc.fr/item/JMAG_2014_10_2_a3/
[1] I. A. Gordeyeva, V. I. Panzhensky, S. E. Stepanov, “Riemann–Cartan Manifolds”, J. Math. Sci., 169:3 (2009), 342–361 | DOI
[2] K. Yano, S. Bochner, Curvature and Betti Numbers, Ann. Math. Stud., 32, Princeton Univ. Press, Princeton, 1953 | MR | Zbl
[3] L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press, 1968 | MR
[4] Y. B. Zeldovich, N. D. Novikov, The Structure and Evolution of the Universe, Nauka, M., 1975 (Russian)
[5] S. E. Stepanov, I. A. Gordeyeva, “Pseudo-killing and Pseudoharmonic Vector Fields on a Riemann–Cartan Manifold”, Math. Notes, 87 (2010), 248–257 | DOI | MR | Zbl
[6] V. I. Panzhensky, “Maximally Movable Riemannian Spaces with Torsion”, Math. Notes, 85:5 (2009), 720–723 | DOI | MR