Generalized Duality, Hamiltonian Formalism and New Brackets
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 2, pp. 189-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that any singular Lagrangian theory: 1) can be formulated without the use of constraints by introducing a Clairaut-type version of the Hamiltonian formalism; 2) leads to a special kind of nonabelian gauge theory which is similar to the Poisson gauge theory; 3) can be treated as the many-time classical dynamics. A generalization of the Legendre transform to the zero Hessian case is done by using the mixed (envelope/general) solution of the multidimensional Clairaut equation. The equations of motion are written in the Hamilton-like form by introducing new antisymmetric brackets. It is shown that any classical degenerate Lagrangian theory is equivalent to the many-time classical dynamics. Finally, the relation between the presented formalism and the Dirac approach to constrained systems is given.
@article{JMAG_2014_10_2_a1,
     author = {S. Duplij},
     title = {Generalized {Duality,} {Hamiltonian} {Formalism} and {New} {Brackets}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {189--220},
     year = {2014},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_2_a1/}
}
TY  - JOUR
AU  - S. Duplij
TI  - Generalized Duality, Hamiltonian Formalism and New Brackets
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2014
SP  - 189
EP  - 220
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2014_10_2_a1/
LA  - en
ID  - JMAG_2014_10_2_a1
ER  - 
%0 Journal Article
%A S. Duplij
%T Generalized Duality, Hamiltonian Formalism and New Brackets
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2014
%P 189-220
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2014_10_2_a1/
%G en
%F JMAG_2014_10_2_a1
S. Duplij. Generalized Duality, Hamiltonian Formalism and New Brackets. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 2, pp. 189-220. http://geodesic.mathdoc.fr/item/JMAG_2014_10_2_a1/

[1] R. Abraham, J. E. Marsden, Foundations of Mechanics, Benjamin-Cummings, Reading, 1978 | MR | Zbl

[2] P. Alart, O. Maisonneuve, R. T. Rockafellar, Nonsmooth Mechanics and Analysis: Theoretical and Numerical Advances, Springer-Verlag, Berlin, 2006 | MR

[3] D. V. Alekseevskij, A. M. Vinogradov, V. V. Lychagin, Geometry, v. I, Basic Ideas and Concepts of Differential Geometry, Springer, New York, 1991 | MR

[4] V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1988 | MR

[5] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, Berlin, 1989 | MR

[6] D. Baleanu, “Fractional Hamiltonian Analysis of Irregular Systems”, Signal Proc., 86 (2006), 2632–2636 | DOI | Zbl

[7] L. Bates, J. Śniatycki, “Nonholonomic reduction”, Rep. Math. Phys., 32 (1993), 99–115 | DOI | MR | Zbl

[8] C. Battle, J. Gomis, J. M. Pons, N. Roman-Roy, “On the Legendre Transformation for Singular Lagrangians and Related Topics”, J. Phys. A: Math. Gen., 20 (1987), 5113–5123 | DOI | MR

[9] P. Bueken, “Multi-Hamiltonian Formulation for a Class of Degenerate Completely Integrable Systems”, J. Math. Phys., 37 (1996), 2851–2862 | DOI | MR | Zbl

[10] G. Caratù, G. Marmo, A. Simoni, B. Vitale, F. Zaccaria, “Lagrangian and Hamiltonian Eormalisms: an Analysis of Classical Mechanics on Tangent and Cotangent Bundles”, Nuovo Cim. B, 31 (1976), 152–172 | DOI | MR

[11] J. F. Carinena, “Theory of Singular Lagrangians”, Fortsch. Physik, 38 (1990), 641–679 | DOI | MR

[12] R. Cawley, “Determination of the Hamiltonian in the Presence of Constraints”, Phys. Rev. Lett., 42 (1979), 413–416 | DOI

[13] H. Cendra, D. D. Holm, M. J. V. Hoyle, J. E. Marsden, “The Maxwell–Vlasov Equations in Euler–Poincare form”, J. Math. Phys., 39 (1998), 3138–3157 | DOI | MR | Zbl

[14] N. H. Christ, T. D. Lee, “Operator Ordering and Feynman Rules in Gauge Theories”, Phys. Rev. D, 22 (1980), 939–958 | DOI | MR

[15] F. H. Clarke, “Extremal Arcs and Extended Hamiltonian Systems”, Trans. Amer. Math. Soc., 231 (1977), 349–367 | DOI | MR | Zbl

[16] P. Dazord, “Mécanique Hamiltonienne en Presence de Constraintes”, Illinois J. Math., 38 (1994), 148–1175 | MR

[17] P. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan, D. R. Morrison, E. Witten (Eds.), Quantum Fields and Strings: A Cource for Mathematicians, v. 1, 2, AMS, Providence, 1999

[18] A. A. Deriglazov, “Analysis of Constrained Theories Without Use of Primary Constraints”, Phys. Lett. B, 626 (2005), 243–248 | DOI | MR | Zbl

[19] P. A. M. Dirac, Lectures on Quantum Mechanics, Yeshiva University, New York, 1964 | MR

[20] R. G. Di Stefano, “A Modification of Dirac's Method of Hamiltonian Analysis”, Phys. Rev. D, 27 (1983), 1752–1765 | DOI | MR

[21] D. Dominici, G. Longhi, J. Gomis, J. M. Pons, “Hamilton–Jacobi Theory for Constrained Systems”, J. Math. Phys., 25 (1984), 2439–2452 | DOI | MR | Zbl

[22] P. Droz-Vincent, Is Interaction Possible without Heredity?, Lett. Nuovo Cim., 1 (1969), 839–841 | DOI

[23] S. Duplij, “Some Abstract Properties of Semigroups Appearing in Superconformal Theories”, Semigroup Forum, 54 (1997), 253–260, arXiv: hep-th/9505179 | DOI | MR | Zbl

[24] S. Duplij, “Analysis of Constraint Systems Using the Clairaut Equation”, Proceedings of 5th Mathematical Physics Meeting: Summer School in Modern Mathematical Physics (6–17 July 2008), eds. B. Dragovich, Z. Rakic, Institute of Physics, Belgrade, 2009, 217–225

[25] S. Duplij, “A New Hamiltonian Formalism for Singular Lagrangian Theories”, J. Kharkov National Univ., ser. Nuclei, Particles and Fields, 969 (2011), 34–39

[26] D. B. Fairlie, P. Fletcher, C. K. Zachos, “Infinite-Dimensional Algebras and a Trigonometric Basis for the Classical Lie Algebras”, J. Math. Phys., 31 (1990), 1088–1094 | DOI | MR | Zbl

[27] W. Fenchel, “On Conjugate Convex Functions”, Canad. J. Math., 1 (1949), 73–77 | DOI | MR | Zbl

[28] E. Floratos, J. Iliopoulos, G. Tiktopoulos, “A Note on ${SU}(\infty)$ Classical Yang–Mills Theories”, Phys. Lett., 217 (1989), 285–288 | DOI | MR

[29] G. Giachetta, L. Mangiarotti, G. Sardanashvily, New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific, Singapore, 1997 | MR | Zbl

[30] D. M. Gitman, I. V. Tyutin, Canonical Quantization of Constrained Fields, Nauka, M., 1986 | MR | Zbl

[31] D. M. Gitman, I. V. Tyutin, Quantization of Fields with Constraints, Springer-Verlag, Berlin, 1990 | MR | Zbl

[32] D. M. Gitman, I. V. Tyutin, “Hamiltonization of Theories with Degenerate Coordinates”, Nucl. Phys. B, 630 (2002), 509–527 | DOI | MR | Zbl

[33] R. Goebel, R. T. Rockafellar, “Generalized Conjugacy in Hamilton–Jacobi Theory for Fully Convex Lagrangians”, J. Convex Analysis, 9 (2002), 463–474 | MR

[34] S. A. Gogilidze, A. M. Khvedelidze, D. M. Mladenov, H.-P. Pavel, “Hamiltonian Reduction of ${SU}(2)$ Dirac–Yang–Mills Mechanics”, Phys. Rev. D, 57 (1998), 7488–7500 | DOI | MR

[35] S. A. Gogilidze, A. M. Khvedelidze, V. N. Pervushin, “On Abelianization of First Class Constraints”, J. Math. Phys., 37 (1996), 1760–1771 | DOI | MR | Zbl

[36] H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, 1990 | MR

[37] W. Greiner, J. Reinhardt, Field Quantization, Springer, Berlin, 1996 | MR

[38] M. Henneaux, C. Teitelboim, Quantization of Gauge Systems, Princeton University Press, Princeton, 1994 | MR

[39] N. Hitchin, “Generalized Calabi–Yau manifolds”, Quart. J. Math. Oxford Ser., 54 (2003), 281–308 | DOI | MR | Zbl

[40] A. Ioffe, “Euler–Lagrange and Hamiltonian Formalisms in Dynamic Optimization”, Trans. Amer. Math. Soc., 349 (1997), 2871–2900 | DOI | MR | Zbl

[41] S. Izumiya, “Systems of Clairaut Type”, Colloq. Math., 66 (1994), 219–226 | MR | Zbl

[42] E. Kamke, “Üeber Clairautsche Differentialgleichung”, Math. Zeit., 27 (1928), 623–639 | DOI | MR | Zbl

[43] A. M. Khvedelidze, “On the Hamiltonian Formulation of Gauge Theories in Terms of Physical Variables”, J. Math. Sci., 119 (2004), 513–555 | DOI | MR | Zbl

[44] A. Komar, “Constraint Formalism of Classical Mechanics”, Phys. Rev. D, 18 (1978), 1881–1886 | DOI | MR

[45] A. Konechny, A. Schwarz, “Introduction to Matrix Theory and Noncommutative Geometry”, Phys. Rep., 360 (2002), 353–465 | DOI | MR | Zbl

[46] O. Krupkova, “Hamiltonian Field Theory”, J. Geom. Phys., 43 (2002), 93–132 | DOI | MR | Zbl

[47] O. Krupkova, D. Smetanova, “Legendre Transformation for Regularizable Lagrangians in Field Theory”, Lett. Math. Phys., 58 (2001), 189–204 | DOI | MR | Zbl

[48] G. Longhi, L. Lusanna, J. M. Pons, “On the Many-time Formulation of Classical Particle Dynamics”, J. Math. Phys., 30 (1989), 1893–1912 | DOI | MR | Zbl

[49] F. Loran, “Non-Abelianizable First Class Constraints”, Commun. Math. Phys., 254 (2005), 167–178 | DOI | MR | Zbl

[50] L. Lusanna, “The Second Noether Theorem as the Basis of the Theory of Singular Lagrangians and Hamiltonian Constraints”, Riv. Nuovo Cim., 14 (1991), 1–75 | DOI | MR

[51] V. K. Maltsev, “On Canonical Formulation of Field Theories with Singular Lagrangians”, JETP Lett., 27 (1978), 473–475

[52] C. M. Marle, “Géométrie des Systèmes Méchaniques à Liaisons Actives”, Symplectic Geometry and Mathematical Physics, eds. P. Donato, C. Duval, J. Elhadad, G. M. Tuynman, Birkhäuser, Boston, 1991, 260–287 | DOI | MR

[53] G. Marmo, G. Mendella, W. Tulczyjew, “Constrained Hamiltonian Systems as Implicit Differential Equations”, J. Phys. A, 30 (1997), 277–293 | DOI | MR | Zbl

[54] G. Marmo, E. J. Saletan, A. Simoni, B. Vitale, Dynamical Systems: a Differential Geometric Approach to Symmetry and Reduction, J. Wiley, Chichester, 1985 | MR | Zbl

[55] M. R. Menzo, W. M. Tulczyjew, “Infinitesimal Symplectic Relations and Deneralized Hamiltonian Dynamics”, Ann. Inst. Henri Poincaré, A4 (1978), 349–367 | MR

[56] O. Mišković, J. Zanelli, “Dynamical Structure of Irregular Constrained Systems”, J. Math. Phys., 44 (2003), 3876–3887 | DOI | MR

[57] J. M. Pons, “On Dirac's Incomplete Analysis of Gauge Transformations”, Stud. Hist. Philos. Mod. Phys., 36 (2005), 491–518 | DOI | MR | Zbl

[58] A. Randono, “Canonical Lagrangian Dynamics and General Relativity”, Class. Quant. Grav., 25 (2008), 205017 | DOI | MR | Zbl

[59] T. Regge, C. Teitelboim, Constrained Hamiltonian Systems, Academia Nazionale dei Lincei, Rome, 1976

[60] R. T. Rockafellar, “Conjugates and Legendre Transforms of Convex Functions”, Canad. J. Math., 19 (1967), 200–205 | DOI | MR | Zbl

[61] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970 | MR

[62] R. T. Rockafellar, “Equivalent Subgradient Versions of Hamiltonian and Euler–Lagrange Equations in Variational Analysis”, SIAM J. Control Opt., 34 (1996), 1300–1315 | DOI | MR

[63] M. V. Saveliev, A. M. Vershik, “New Examples of Continuum Graded Lie Algebras”, Phys. Lett. A, 143 (1990), 121–128 | DOI | MR

[64] S. Sternberg, “Legendre Transformation of Curves”, Proc. Amer. Math. Soc., 5 (1954), 942–945 | DOI | MR | Zbl

[65] E. C. Sudarshan, N. Mukunda, Classical Dynamics: A Modern Perspective, Wiley, New York, 1974 | MR | Zbl

[66] K. Sundermeyer, Constrained Dynamics, Springer-Verlag, Berlin, 1982 | MR | Zbl

[67] W. M. Tulczyjew, “The Legendre Transformation”, Ann. Inst. Henri Poincaré, A27 (1977), 101–114 | MR | Zbl

[68] W. M. Tulczyjew, Geometric Formulation of Physical Theories, Bibliopolis, Naples, 1989 | MR | Zbl

[69] W. M. Tulczyjew, P. Urbański, “A Slow and Careful Legendre Transformation for Singular Lagrangians”, Acta Phys. Pol. B, 30 (1999), 2909–2977 | MR

[70] C. Vallee, M. Hjiaj, D. Fortune, G. de Saxce, “Generalized Legendre–Fenchel Transformation”, Adv. Mech. Math., 6 (2004), 289–312 | DOI | MR

[71] A. J. van der Schaft, “Implicit Hamiltonian Systems with Symmetry”, Rep. Math. Phys., 41 (1998), 203–221 | DOI | MR | Zbl

[72] A. M. Wang, T. N. Ran, “Corrected Forms of Physical Supplementary Conditions and Gauge Conditions in Singular Lagrangian Systems”, Phys. Rev. Lett., 73 (1994), 2011–2014 | DOI | MR | Zbl

[73] S. Weinberg, The Quantum Theory of Fields, v. 1, 2, 3, Cambridge University Press, Cambridge, 1995–2000 | MR

[74] A. Wipf, “Hamilton's Formalism for Systems with Constraints”, Canonical Gravity: From Classical to Quantum, eds. J. Ehlers, H. Friedrich, Springer, Heidelberg, 1994, 22–58 | DOI | MR | Zbl

[75] H. Yoshimura, J. E. Marsden, “Dirac Structures and the Legendre Transformation for Implicit Lagrangian and Hamiltonian Systems”, Lagrangian and Hamiltonian Methods for Nonlinear Control, eds. F. Bullo, Springer, Berlin, 2007, 233–247 | DOI | MR | Zbl

[76] C. Zachos, “Hamiltonian Flows, ${SU}(\infty )$, ${SO}(\infty )$, ${USp}(\infty )$, and Strings”, Differential Geometric Methods in Theoretical Physics: Physics and Geometry, eds. L.-L. Chau, W. Nahm, NATO ASI, Plenum Press, New York, 1990, 423–430 | DOI | MR | Zbl