Local Minimizers of the Magnetic Ginzburg–Landau Functional with $S^1$-valued Order Parameter on the Boundary
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 1, pp. 134-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It was shown in [L. Berlyand and V. Rybalko, Solution with Vortices of a Semi-Stiff Boundary Value Problem for the Ginzburg–Landau Equation, J. Eur. Math. Soc. 12 (2010), 1497–1531] that in doubly connected domains there exist local minimizers of the simplified Ginzburg–Landau functional with modulus one and prescribed degrees on the boundary, unlike global minimizers that typically do not exist. We generalize the results and techniques of the aforementioned paper to the case of the magnetic Ginzburg–Landau functional.
@article{JMAG_2014_10_1_a4,
     author = {V. Rybalko},
     title = {Local {Minimizers} of the {Magnetic} {Ginzburg{\textendash}Landau} {Functional} with $S^1$-valued {Order} {Parameter} on the {Boundary}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {134--151},
     year = {2014},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_1_a4/}
}
TY  - JOUR
AU  - V. Rybalko
TI  - Local Minimizers of the Magnetic Ginzburg–Landau Functional with $S^1$-valued Order Parameter on the Boundary
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2014
SP  - 134
EP  - 151
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2014_10_1_a4/
LA  - en
ID  - JMAG_2014_10_1_a4
ER  - 
%0 Journal Article
%A V. Rybalko
%T Local Minimizers of the Magnetic Ginzburg–Landau Functional with $S^1$-valued Order Parameter on the Boundary
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2014
%P 134-151
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2014_10_1_a4/
%G en
%F JMAG_2014_10_1_a4
V. Rybalko. Local Minimizers of the Magnetic Ginzburg–Landau Functional with $S^1$-valued Order Parameter on the Boundary. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 1, pp. 134-151. http://geodesic.mathdoc.fr/item/JMAG_2014_10_1_a4/

[1] L. Berlyand, P. Mironescu, Ginzburg–Landau Minimizers with Prescribed Degrees. Capacity of the Domain and Emergence of Vortices, Preprint, http://desargues.univ-lyon1.fr

[2] L. Berlyand, P. Mironescu, “Ginzburg–Landau Minimizers with Prescribed Degrees. Capacity of the Domain and Emergence of Vortices”, J. Funct. Anal., 239 (2006), 76–99 | DOI | MR | Zbl

[3] L. Berlyand, D. Golovaty, V. Rybalko, “Nonexistence of Ginzburg–Landau Minimizers with Prescribed Degree on the Boundary of a Doubly Connected Domain”, C. R. Math. Acad. Sci. Paris, 343 (2006), 63–68 | DOI | MR | Zbl

[4] L. Berlyand, O. Misiats, V. Rybalko, “Near Boundary Vortices in a Magnetic Ginzburg–Landau Model: their Locations Via Tight Energy Bounds”, J. Func. Analysis, 258 (2010), 1728–1762 | DOI | MR | Zbl

[5] L. Berlyand, O. Misiats, V. Rybalko, “Minimizers of the Magnetic Ginzburg–Landau Functional in Simply Connected Domain with Prescribed Degree on the Boundary”, Commun. Contemp. Math., 13 (2011), 53–66 | DOI | MR | Zbl

[6] L. Berlyand, V. Rybalko, “Solutions with Vortices of a Semi-Stiff Boundary Value Problem for the Ginzburg–Landau Equation”, J. Eur. Math. Soc., 12 (2010), 1497–1531 | DOI | Zbl

[7] F. Bethuel, H. Brezis, F. Helein, Ginzburg–Landau Vortices, Birkhauser, 1994 | Zbl

[8] E. B. Bogomol'nyi, “The Stability of Classical Solutions”, Sov. J. Nuclear Phys., 24 (1976), 449–454 | MR

[9] A. Boutet de Monvel-Berthier, V. Georgescu, R. Purice, “A Boundary Value Problem Related to the Ginzburg–Landau Model”, Comm. Math. Phys., 142 (1991), 1–23 | DOI | MR | Zbl

[10] A. Contreras, S. Serfaty, “Large Vorticity Stable Solutions to the Ginzburg–Landau Equations”, Indiana Univ. Math. J. (to appear)

[11] M. Del Pino, P.-L. Felmer, “Local Minimizers for the Ginzburg–Landau Energy”, Math. Zh., 225 (1997), 671–684 | DOI | Zbl

[12] M. Del Pino, M. Kowalczyk, M. Musso, “Variational Reduction for Ginzburg–Landau Vortices”, J. Funct. Anal., 239 (2006), 497–541 | DOI | MR | Zbl

[13] M. Dos Santos, “Local Minimizers of the Ginzburg–Landau Functional with Prescribed Degrees”, J. Funct. Anal., 257 (2009), 1053–1091 | DOI | MR | Zbl

[14] S. Jimbo, Y. Morita, J. Zhai, “Ginzburg–Landau Equation and Stable Steady State Solutions in a Nontrivial Domain”, Comm. Part. Diff. Eq., 20 (1995), 2093–2112 | DOI | MR | Zbl

[15] S. Jimbo, P. Sternberg, “Nonexistence of Permanent Currents in Convex Planar Samples”, SIAM J. Math. Anal., 33 (2002), 1379–1392 | DOI | MR | Zbl

[16] F.-H. Lin, T.-Ch. Lin, “Minimax Solutions of the Ginzburg–Landau Equations”, Selecta Math. (N.S.), 3 (1997), 99–113 | DOI | MR | Zbl

[17] P. Mironescu, A. Pisante, “A Variational Problem with Lack of Compactness for $H^{1/2}(\mathbb{S}^1;\mathbb{S}^1)$ Maps of Prescribed Degree”, J. Funct. Anal., 217 (2004), 249–279 | DOI | MR | Zbl

[18] J. Rubinstein, P. Sternberg, “Homotopy Classification of Minimizers of the Ginzburg–Landau Energy and the Existence of Permanent Currents”, Comm. Math. Phys., 179 (1996), 257–263 | DOI | Zbl

[19] E. Sandier, S. Serfaty, Vortices in the Magnetic Ginzburg–Landau Model, Progress in Nonlinear Differential Equations and their Applications, Birkhauser, 2007 | Zbl

[20] S. Serfaty, “Local Minimizers for the Ginzburg–Landau Energy near Critical Magnetic Field. I; II”, Commun. Contemp. Math., 1 (1999), 213–254 ; 295–333 | DOI | MR | Zbl | MR | Zbl

[21] S. Serfaty, “Stability in 2D Ginzburg–Landau Passes to the Limit”, Indiana Univ. Math. J., 54 (2005), 199–221 | DOI | MR | Zbl

[22] S. Serfaty, “Stable Configurations in Superconductivity: Uniqueness, Multiplicity and Vortex-Nucleation”, Arch. Ration. Mech. Anal., 149 (1999), 329–365 | DOI | MR | Zbl

[23] C. Taubes, “Arbitrary $N$-vortex Solutions to the First Order Ginzburg–Landau Equations”, Comm. Math. Phys., 72 (1980), 277–292 | DOI | MR | Zbl