@article{JMAG_2014_10_1_a4,
author = {V. Rybalko},
title = {Local {Minimizers} of the {Magnetic} {Ginzburg{\textendash}Landau} {Functional} with $S^1$-valued {Order} {Parameter} on the {Boundary}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {134--151},
year = {2014},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_1_a4/}
}
TY - JOUR AU - V. Rybalko TI - Local Minimizers of the Magnetic Ginzburg–Landau Functional with $S^1$-valued Order Parameter on the Boundary JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2014 SP - 134 EP - 151 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2014_10_1_a4/ LA - en ID - JMAG_2014_10_1_a4 ER -
%0 Journal Article %A V. Rybalko %T Local Minimizers of the Magnetic Ginzburg–Landau Functional with $S^1$-valued Order Parameter on the Boundary %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2014 %P 134-151 %V 10 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_2014_10_1_a4/ %G en %F JMAG_2014_10_1_a4
V. Rybalko. Local Minimizers of the Magnetic Ginzburg–Landau Functional with $S^1$-valued Order Parameter on the Boundary. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 1, pp. 134-151. http://geodesic.mathdoc.fr/item/JMAG_2014_10_1_a4/
[1] L. Berlyand, P. Mironescu, Ginzburg–Landau Minimizers with Prescribed Degrees. Capacity of the Domain and Emergence of Vortices, Preprint, http://desargues.univ-lyon1.fr
[2] L. Berlyand, P. Mironescu, “Ginzburg–Landau Minimizers with Prescribed Degrees. Capacity of the Domain and Emergence of Vortices”, J. Funct. Anal., 239 (2006), 76–99 | DOI | MR | Zbl
[3] L. Berlyand, D. Golovaty, V. Rybalko, “Nonexistence of Ginzburg–Landau Minimizers with Prescribed Degree on the Boundary of a Doubly Connected Domain”, C. R. Math. Acad. Sci. Paris, 343 (2006), 63–68 | DOI | MR | Zbl
[4] L. Berlyand, O. Misiats, V. Rybalko, “Near Boundary Vortices in a Magnetic Ginzburg–Landau Model: their Locations Via Tight Energy Bounds”, J. Func. Analysis, 258 (2010), 1728–1762 | DOI | MR | Zbl
[5] L. Berlyand, O. Misiats, V. Rybalko, “Minimizers of the Magnetic Ginzburg–Landau Functional in Simply Connected Domain with Prescribed Degree on the Boundary”, Commun. Contemp. Math., 13 (2011), 53–66 | DOI | MR | Zbl
[6] L. Berlyand, V. Rybalko, “Solutions with Vortices of a Semi-Stiff Boundary Value Problem for the Ginzburg–Landau Equation”, J. Eur. Math. Soc., 12 (2010), 1497–1531 | DOI | Zbl
[7] F. Bethuel, H. Brezis, F. Helein, Ginzburg–Landau Vortices, Birkhauser, 1994 | Zbl
[8] E. B. Bogomol'nyi, “The Stability of Classical Solutions”, Sov. J. Nuclear Phys., 24 (1976), 449–454 | MR
[9] A. Boutet de Monvel-Berthier, V. Georgescu, R. Purice, “A Boundary Value Problem Related to the Ginzburg–Landau Model”, Comm. Math. Phys., 142 (1991), 1–23 | DOI | MR | Zbl
[10] A. Contreras, S. Serfaty, “Large Vorticity Stable Solutions to the Ginzburg–Landau Equations”, Indiana Univ. Math. J. (to appear)
[11] M. Del Pino, P.-L. Felmer, “Local Minimizers for the Ginzburg–Landau Energy”, Math. Zh., 225 (1997), 671–684 | DOI | Zbl
[12] M. Del Pino, M. Kowalczyk, M. Musso, “Variational Reduction for Ginzburg–Landau Vortices”, J. Funct. Anal., 239 (2006), 497–541 | DOI | MR | Zbl
[13] M. Dos Santos, “Local Minimizers of the Ginzburg–Landau Functional with Prescribed Degrees”, J. Funct. Anal., 257 (2009), 1053–1091 | DOI | MR | Zbl
[14] S. Jimbo, Y. Morita, J. Zhai, “Ginzburg–Landau Equation and Stable Steady State Solutions in a Nontrivial Domain”, Comm. Part. Diff. Eq., 20 (1995), 2093–2112 | DOI | MR | Zbl
[15] S. Jimbo, P. Sternberg, “Nonexistence of Permanent Currents in Convex Planar Samples”, SIAM J. Math. Anal., 33 (2002), 1379–1392 | DOI | MR | Zbl
[16] F.-H. Lin, T.-Ch. Lin, “Minimax Solutions of the Ginzburg–Landau Equations”, Selecta Math. (N.S.), 3 (1997), 99–113 | DOI | MR | Zbl
[17] P. Mironescu, A. Pisante, “A Variational Problem with Lack of Compactness for $H^{1/2}(\mathbb{S}^1;\mathbb{S}^1)$ Maps of Prescribed Degree”, J. Funct. Anal., 217 (2004), 249–279 | DOI | MR | Zbl
[18] J. Rubinstein, P. Sternberg, “Homotopy Classification of Minimizers of the Ginzburg–Landau Energy and the Existence of Permanent Currents”, Comm. Math. Phys., 179 (1996), 257–263 | DOI | Zbl
[19] E. Sandier, S. Serfaty, Vortices in the Magnetic Ginzburg–Landau Model, Progress in Nonlinear Differential Equations and their Applications, Birkhauser, 2007 | Zbl
[20] S. Serfaty, “Local Minimizers for the Ginzburg–Landau Energy near Critical Magnetic Field. I; II”, Commun. Contemp. Math., 1 (1999), 213–254 ; 295–333 | DOI | MR | Zbl | MR | Zbl
[21] S. Serfaty, “Stability in 2D Ginzburg–Landau Passes to the Limit”, Indiana Univ. Math. J., 54 (2005), 199–221 | DOI | MR | Zbl
[22] S. Serfaty, “Stable Configurations in Superconductivity: Uniqueness, Multiplicity and Vortex-Nucleation”, Arch. Ration. Mech. Anal., 149 (1999), 329–365 | DOI | MR | Zbl
[23] C. Taubes, “Arbitrary $N$-vortex Solutions to the First Order Ginzburg–Landau Equations”, Comm. Math. Phys., 72 (1980), 277–292 | DOI | MR | Zbl