@article{JMAG_2014_10_1_a1,
author = {A. M. Kholkin and F. S. Rofe-Beketov},
title = {On {Spectrum} of {Differential} {Operator} with {Block-Triangular} {Matrix} {Coefficients}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {44--63},
year = {2014},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_1_a1/}
}
TY - JOUR AU - A. M. Kholkin AU - F. S. Rofe-Beketov TI - On Spectrum of Differential Operator with Block-Triangular Matrix Coefficients JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2014 SP - 44 EP - 63 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2014_10_1_a1/ LA - en ID - JMAG_2014_10_1_a1 ER -
%0 Journal Article %A A. M. Kholkin %A F. S. Rofe-Beketov %T On Spectrum of Differential Operator with Block-Triangular Matrix Coefficients %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2014 %P 44-63 %V 10 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_2014_10_1_a1/ %G en %F JMAG_2014_10_1_a1
A. M. Kholkin; F. S. Rofe-Beketov. On Spectrum of Differential Operator with Block-Triangular Matrix Coefficients. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 1, pp. 44-63. http://geodesic.mathdoc.fr/item/JMAG_2014_10_1_a1/
[1] A. M. Kholkin, F. S. Rofe-Beketov, “Sturm Type Oscillation Theorems for Equations with Block-Triangular Matrix Coefficients”, Methods Funct. Anal. Topology, 18:2 (2012), 176–188 | MR | Zbl
[2] E. I. Bondarenko, F. S. Rofe-Beketov, “Inverse Scattering Problem on the Semiaxis for a System with a Triangular Matrix Potential”, Math. Phys., Anal., Geom., 10:3 (2003), 412–424 (Russian) | MR | Zbl
[3] Telecommun. Radio Eng., 56:8–9 (2001), 4–29
[4] F. S. Rofe-Beketov, E. I. Zubkova, “Inverse Scattering Problem on the Axis for the Triangular $2\times 2$ Matrix Potential with or without a Virtual Level”, Azerbaijan J. Math., 1:2 (2011), 3–69 | MR | Zbl
[5] V. A. Marchenko, Spectral Theory of Sturm–Liouville Operators, Naukova Dumka, Kiev, 1972 (Russian) | Zbl
[6] V. A. Marchenko, Sturm–Liouville Operators and its Applications, Naukova Dumka, Kiev, 1977 (Russian); Engl. transl.: Oper. Theory Adv. Appl., 22, Birkhauser Verlag, Basel, 1986, xii+367 pp. ; revised edition, AMS Chelsea Publishing, Providence, R.I., 2011, xiv+396 pp. | DOI | MR | Zbl | Zbl
[7] V. A. Marchenko, F. S. Rofe-Beketov, “Expansion in Eigenfunctions of Non-selfadjoint Singular Differential Operators”, Dokl. Akad. Nauk. SSSR, 120:5 (1958), 963–966 (Russian) | MR | Zbl
[8] F. S. Rofe-Beketov, “Expansion in Eigenfunctions of Infinite Systems of Differential Equations in the Non-selfadjoint and Selfadjoint Cases”, Mat. Sb., 51:3 (1960), 293–342 (Russian) | MR | Zbl
[9] Gordon Breach, New York–London, 1963 | Zbl | Zbl
[10] F. S. Rofe-Beketov, A. M. Kholkin, Spectral Analysis of Differential Operators. Interplay between Spectral and Oscillatory Properties, With Foreword by V. A. Marchenko, World Scientific, New Jersey–London–Singapore–Beijing–Shanghai–Hong Kong–Taipei–Chennai, 2005 | Zbl
[11] A. Eremenko, A. Gabrielov, Spectral Loci of Sturm–Liouville Operators with Polynomial Potentials, in print
[12] v. 2, Izdat. Inostran. Lit., M., 1961 | Zbl
[13] F. S. Rofe-Beketov, E. Kh. Khristov, “Asymptotic and Analytic Questions Connected with Scattering by a Highly Singular Potential”, Collection of Proceeding of Fiz. Tekh. Inst. Niz. Temp. Akad. Nauk Ukrain. SSR, Mathematics, Physics and Functional Analysis Series, 2, Kharkov, 1971, 122–168 (Russian) | MR
[14] A. N. Tichonov, A. A. Samarsky, Equations of Mathematical Physics, Nauka, M., 1972 (Russian)
[15] M. A. Naimark, “Research of Spectrum and Expansion in Eigenfunctions of Non-selfadjoint Differential Operators of Second Order on the Semiaxis”, Tr. Mosk. Mat. Obs., 3, 1954, 181–270 (Russian) | MR | Zbl
[16] J. T. Schwartz, “Some Non-selfadjoint Operators”, Comm. Pure Appl. Math., XIII (1960), 609–639 | DOI | Zbl
[17] M. A. Naimark, Linear Differential Operators, Nauka, M., 1969 (Russian) ; Engl. transl.: v. I, Frederic Ungar Publishing Co., New York, 1967 ; v. II, 1968 | Zbl | Zbl
[18] V. E. Ljance, “Non-selfadjoint Differential Operators of Second Order on the Semiaxis”, Supplement I, [17]
[19] Math. USSR-Izv., 10 (1976), 565–613 | DOI | MR | Zbl
[20] J. Sov. Math., 48:3 (1990), 337–345 | DOI | MR | Zbl | Zbl
[21] J. F. Brasche, M. Malamud, H. Neidhardt, “Weyl Function and Spectral Properties of Selfadjoint Extensions”, Integral Equations Operator, 43:3 (1990), 264–289 | DOI | MR
[22] V. A. Derkach, S. Hassi, M. M. Malamud, H. S. V. Snoo, “Weyl Functions and Intermediate Extensions of Symmetric Operators”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 2001, no. 10, 33–39 | MR | Zbl
[23] V. I. Khrabustovskiy, “On the Characteristic Matrix of Weyl–Titchmarch Type for Differential-Operator Equations with the Spectral Parameter Entering Linearly or by Nevanlinna Type”, Mat. Fiz. Anal. Geom., 10:2 (2003), 205–227 (Russian) | MR
[24] M. Lesch, M. M. Malamud, “On the Deficiency Indices and Selfadjointness of Symmetric Hamiltonian Systems”, J. Diff. Equations, 10 (2003), 556–615 | DOI | MR