The Two-Phase Hele–Shaw Problem with a Nonregular Initial Interface and Without Surface Tension
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 1, pp. 3-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, we consider the two-dimensional Muskat problem without surface tension on a free boundary. The initial shape of the unknown interface has a corner point. We prove that the problem has a unique solution in the weighted Hölder classes locally in time and specify the sufficient conditions for the existence of the "waiting time" phenomenon.
@article{JMAG_2014_10_1_a0,
     author = {B. V. Bazaliy and N. Vasylyeva},
     title = {The {Two-Phase} {Hele{\textendash}Shaw} {Problem} with a {Nonregular} {Initial} {Interface} and {Without} {Surface} {Tension}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {3--43},
     year = {2014},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2014_10_1_a0/}
}
TY  - JOUR
AU  - B. V. Bazaliy
AU  - N. Vasylyeva
TI  - The Two-Phase Hele–Shaw Problem with a Nonregular Initial Interface and Without Surface Tension
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2014
SP  - 3
EP  - 43
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2014_10_1_a0/
LA  - en
ID  - JMAG_2014_10_1_a0
ER  - 
%0 Journal Article
%A B. V. Bazaliy
%A N. Vasylyeva
%T The Two-Phase Hele–Shaw Problem with a Nonregular Initial Interface and Without Surface Tension
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2014
%P 3-43
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2014_10_1_a0/
%G en
%F JMAG_2014_10_1_a0
B. V. Bazaliy; N. Vasylyeva. The Two-Phase Hele–Shaw Problem with a Nonregular Initial Interface and Without Surface Tension. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2014) no. 1, pp. 3-43. http://geodesic.mathdoc.fr/item/JMAG_2014_10_1_a0/

[1] D. Ambrose, “Well-Posedness of Two-Phase Hele–Shaw Flow without Surface Tension”, European J. Appl. Math., 15 (2004), 597–607 | DOI | MR | Zbl

[2] H. Bateman, A. Erdélyi, Tables of Integral Transforms, v. 1, Book Company, INC, New York–Toronto–London, 1954

[3] B. V. Bazaliy, “Stefan Problem for the Laplace Equation with Regard for the Curvature of the Free Boundary”, Ukr. Math. J., 40 (1997), 1465–1484 | DOI

[4] B. V. Bazaliy, “Classical Solvability of the Free Boundary Hele–Shaw Problem”, Ukr. Math. J., 50 (1998), 1452–1462

[5] B. V. Bazaliy, A. Friedman, “The Hele–Shaw Problem with Surface Tension in a Half-Plane”, J. Diff. Eqs., 216 (2005), 439–469 | DOI | MR | Zbl

[6] E. Di Benedetto, A. Friedman, “The Ill-Posed Hele–Shaw and Stefan Problems for Supercoold Water”, Trans. Amer. Math. Soc., 282 (1984), 183–203 | DOI | MR

[7] B. V. Bazaliy, N. Vasylyeva, “The Muskat Problem with Surface Tension and a Nonregular Initial Interface”, Nonlinear Analysis: Theory, Methodsand Applications, 74 (2011), 6074–6096 | DOI | MR | Zbl

[8] B. V. Bazaliy, N. Vasylyeva, “The Transmission Problem in Domains with a Corner Point for the Laplace Operator in Weighted Hölder Spaces”, J. Diff. Eqs., 249 (2010), 2476–2499 | DOI | MR | Zbl

[9] B. V. Bazaliy, N. Vasylyeva, “On the Solvability of a Transmission Problem for the Laplace Operator with a Dynamic Boundary Condition on a Nonregular Interface”, J. Math. Anal. Appl., 393 (2012), 651–670 | DOI | MR | Zbl

[10] J. A. Cima, A. L. Matheson, W. T. Ross, The Cauchy Transform, Mathematical Surveys and Monographs, 125, AMS, 2006 | DOI | MR | Zbl

[11] I. I. Daniliuk, Nonregular Boundary Problems on a Plane, Nauka, M., 2006 (Russian)

[12] S. P. Degtyarev, “The Existence of a Smooth Interface in the Nonstationary Elliptic Muskat–Verigin Problem with a Nonlinear Source”, Ukr. Math. Bull., 7 (2010), 301–330 | MR

[13] C. Elliott, J. R. Ockendon, Weak and Variational Methods for Moving Boundary Problem, Pitman, London, 1982 | Zbl

[14] J. Esher, B. V. Matioc, “On the Parabolicity of the Muskat Problem: Well-Posedness, Fingering and Stability Results”, Z. Anal. Anwend., 30:2 (2011), 193–218 | DOI | MR

[15] J. Esher, G. Simonett, “Classical Solutions of Multidimensional Hele–Shaw Models”, SIAM J. Math. Anal., 28 (1997), 1028–1047 | DOI | MR

[16] E. I. Hanzawa, “Classical Solution of the Stefan Problem”, Tohoku Math. J., 33 (1981), 297–335 | DOI | MR | Zbl

[17] Y. E. Hohlov, S. Howison, “The Classification of Solutions in the Free Boundary Hele–Shaw Problem”, Dokl. Acad. Nauk USSR, 325 (1992), 1161–1166

[18] S. Howison, “A Note on the Two-Phase Hele–Shaw Problem”, J. Fluid Mech., 409 (2000), 243–249 | DOI | MR | Zbl

[19] L. Jiang, Y. Chen, “Weak Formulation of a Multidimensional Muskat Problem”, Free Boundary Problems: Theory and Applications (Irsee, 1987), v. II, Pitman Research Notes in Mathematics Series, 186, Longman, Harlow, 1990, 509–513

[20] J. R. King, A. A. Lacey, J. L. Vazquez, “Persestence of Corners in Free Boundaries in Hele–Shaw Flow”, European J. Appl. Math., 6 (1995), 455–490 | MR | Zbl

[21] M. V. Krasnoschok, “On an Initial-Boundary Value Problem for a Stationary System of the Theory of Elasticity with Additional Dynamic Condition on a Boundary of a Domain”, Transactions of IAMM, 21 (2010), 137–150

[22] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Parabolic Equations, Transl. Math. Monogr., 23, AMS, Providence, RI, 1968 | Zbl

[23] A. Lundardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in NoDEA, 16, Birkhaüser Verlag, Basel, 1995

[24] P. B. Mucha, “On the Stefan Problem with Surface Tension in the $L_{p}$ Framework”, Adv. Diff. Eqs., 10:8 (2005), 861–900 | Zbl

[25] M. Muskat, “Two Fluid Systems in Porous Media. The Encroachment of Water into an Oil Sand”, Physics, 5 (1934), 250–264 | DOI | Zbl

[26] F. Otto, “Viscous Fingering: an Optimal Bound on the Growth Rate of the Mixing Zone”, SIAM J. Appl. Math., 57:4 (1997), 982–990 | DOI | MR | Zbl

[27] Ja. A. Roitberg, Z. G. Sheftel, “General Boundary Value Problems for Elliptic Equations with Discontinuous Coefficients”, Soviet. Math. Dokl., 4 (1963), 231–234 (Russian)

[28] M. Siegel, R. Caflisch, S. Howison, “Global Existence, Singular Solutions, and Ill-Posedness for the Muskat Problem”, Comm. Pure and Appl. Math., 57 (2004), 1374–1411 | DOI | MR | Zbl

[29] N. Vasylyeva, “On the Solvability of the Hele–Shaw Problem in the Case of Nonsmooth Initial Data in Weighted Hölder Classes”, Ukr. Math. Bull., 2:3 (2005), 323–349 | MR | Zbl

[30] F. Yi, “Local Classical Solution of Muskat Free Boundary Problem”, J. Partial Diff. Eqs., 9 (1996), 84–96 | Zbl

[31] F. Yi, “Global Classical Solution of Muskat Free Boundary Problem”, J. Math. Anal. Appl., 288 (2003), 442–461 | DOI | MR | Zbl