@article{JMAG_2013_9_3_a7,
author = {N. I. Zhukova},
title = {Local and {Global} {Stability} of {Compact} {Leaves} and {Foliations}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {400--420},
year = {2013},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a7/}
}
N. I. Zhukova. Local and Global Stability of Compact Leaves and Foliations. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 3, pp. 400-420. http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a7/
[1] R. A. Blumenthal, J. J. Hebda, “Complementary Distributions wich Preserve the Leaf Geometry and Applications to Totally Geodesic Foliations”, Quart. J. Math., 35:140 (1984), 383–392 | DOI | MR | Zbl
[2] R. A. Blumenthal, “Stability Theorems for Conformal Foliations”, Proc. AMS, 91:3 (1984), 485–491 | DOI | MR | Zbl
[3] R. Blumenthal, “Cartan Submersions and Cartan foliations”, Ill. Math. J., 31 (1987), 327–343 | MR | Zbl
[4] A. Candel, L. Conlon, Foliations, v. I, Graduate Studies in Math., 23, 2000 | MR | Zbl
[5] P. D. Carrasco, Compact Dynamical Foliations, A thesis of PhD, Uni. of Toronto, 2010 | MR
[6] H. Colman, S. Hurder, “LS-category of Compact Hausdorff Foliations”, Trans. Amer. Math. Soc., 356 (2004), 1463–1487 | DOI | MR | Zbl
[7] K. Decesaro, T. Nagano, “On Compact Foliations”, Proc. Symp. Pure Math., 27, 1975, 277–281 | DOI | MR
[8] R. Edwars, K. Millet, D. Sullivan, “Foliations with All Leaves Compact”, Topology, 16 (1977), 13–32 | DOI | MR
[9] C. Ehresmann, “Sur la Theorie des Varietes Feuilletees”, Rend. di Mat. e delle sue appl., Serie V, X (1951) | MR | Zbl
[10] D. Epstein, “Periodic Flows on Three-Manifolds”, Ann. Math., 95:2 (1972), 66–82 | DOI | MR | Zbl
[11] D. Epstein, “Foliations with All Leaves Compact”, Ann. Inst. Fourier, 26:1 (1976), 265–282 | DOI | MR | Zbl
[12] D. Epstein, E. Fogt, “A Counterexample to the Periodic Orbit Conjecture in Codimension 3”, Ann. Math., 108:3 (1978), 539–552 | DOI | MR | Zbl
[13] D. Epstein, K. Millett, D. Tischler, “Leaves without Holonomy”, J. London Math. Soc., 16 (1977), 548–552 | DOI | MR | Zbl
[14] D. B. Fuks, “Foliations”, J. Soviet Math., 18:2 (1982), 255–291 | DOI | MR
[15] A. Gogolev, Partially Hyperbolic Diffeomorphisms with Compact Center Foliations, 28 Apr. 2011, arXiv: 1104.5464v1 [mathDS] | MR
[16] K. Millett, “Compact Foliations”, Lect. Notes Math., 484, 1975, 277–287 | DOI | MR | Zbl
[17] P. Molino, Riemannian Foliations, Progress in Math., Birkhauser, Boston, 1988 | MR | Zbl
[18] R. S. Palais, Global Formulation of the Lie Theory of Transformations Groups, Mem. Amer. Math. Soc., 22, 1957 | MR | Zbl
[19] J. V. Pereira, “Global Stability for Holomorphic Foliations on Kaehler Manfolds”, Qual. Theory Dyn. Syst., 2 (2001), 381–384 | DOI | MR
[20] G. Reeb, Sur Certaines Proprietes Topologiques des Varietes Feuillelees, Actualite Sci. Indust., 1183, Hermann, Paris, 1952 | MR | Zbl
[21] H. Rummler, “Quelques Notions Simples en Geometrie Riemannienne et leurs Applications aux Feuilletages Compacts”, Comment. Math. Helv., 54 (1979), 224–239 | DOI | MR | Zbl
[22] D. Sullivan, “A Counterexample to the Periodic Orbit conjecture”, Publ. Math. IHES, 46:1 (1976), 5–14 | DOI | MR | Zbl
[23] I. Tamura, Topology of foliations, Iwanami Shoten, Japan, 1979 | MR
[24] E. Vogt, “Foliations of Codimension 2 with All Leaves Compact”, Manuscripta Math., 18:2 (1976), 187–212 | DOI | MR | Zbl
[25] H. Winkelnkemper, “Graph of a Foliation”, Ann. Global Anal. Geom., 1:3 (1983), 51–75 | DOI | MR | Zbl
[26] R. A. Wolak, “Foliations Admitting Transverse Systems of Differential Equations”, Comp. Math., 67 (1988), 89–101 | MR | Zbl
[27] R. A. Wolak, Geometric Structures on Foliated Manifolds, Publications del Departamento de Geometria y Topologia, Universidad de Santiago de Compostella, No 76, 1989
[28] R. A. Wolak, “Leaves of Foliations with Transverse $G$-structures of Finite Type”, Pub. UAB, 33 (1989), 153–162 | MR | Zbl
[29] R. A. Wolak, “Graphs, Echresmann Connections and Vanishing Cycles”, Diff. Geom. and Appl. Proc. Conf. (Aug. 28–Sept. 1, 1996, Brno), 345–352 | MR | Zbl
[30] Yoo Hwal Lan, “Existence of Complete Metrics of Riemannian Foliation”, Math. J. Toyama Univ., 15 (1992), 35–38 | MR | Zbl
[31] N. I. Zhukova, Graph of a Foliation with an Eresmann Connection and some its Applications, Dep. No 1154-A90, VINITI, 1990, 53 pp. (Russian)
[32] N. I. Zhukova, “The Graph of a Foliation with Ehresmann Connection and Stability of Leaves”, Rus. Mat. (Izv. VUZ. Mat.), 38:2 (1994), 76–79 | MR | Zbl
[33] N. I. Zhukova, “Properties of Graphs of Ehresmann Foliations”, Vestnik NNGU, ser. Mat., 1 (2004), 77–91 (Russian)
[34] N. I. Zhukova, “Singular Foliations with Ehresmann Connections and their Holonomy Groupoids”, Banach Center Publ., 76, 2007, 471–490 | DOI | MR | Zbl
[35] N. I. Zhukova, “Minimal Sets of Cartan Foliations”, Proc. Steklov Inst. Mat., 256, 2007, 105–135 | DOI | MR | Zbl
[36] N. I. Zhukova, “Complete Foliations with Transversal Rigid Geometries and Their Basic Automorphisms”, Bull. Peoples' Friendship Univ. of Russia, Ser. Math. Inform. Sci. Phys., 2009, no. 2, 14–35
[37] N. I. Zhukova, “Attractors and an Analog of the Lichnerowicz Conjecture for Conformal Foliations”, Sib. Mat. Zh., 52:3 (2011), 555–574 | DOI | MR | Zbl