Local and Global Stability of Compact Leaves and Foliations
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 3, pp. 400-420 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equivalence of the local stability of a compact foliation to the completeness and the quasi analyticity of its pseudogroup is proved. It is also proved that a compact foliation is locally stable if and only if it has the Ehresmann connection and the quasianalytic holonomy pseudogroup. Applications of these criterions are considered. In particular, the local stability of the complete foliations with transverse rigid geometric structures including the Cartan foliations is shown. Without assumption of the existence of an Ehresmann connection, the theorems on the stability of the compact leaves of conformal foliations are proved. Our results agree with the results of other authors.
@article{JMAG_2013_9_3_a7,
     author = {N. I. Zhukova},
     title = {Local and {Global} {Stability} of {Compact} {Leaves} and {Foliations}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {400--420},
     year = {2013},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a7/}
}
TY  - JOUR
AU  - N. I. Zhukova
TI  - Local and Global Stability of Compact Leaves and Foliations
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2013
SP  - 400
EP  - 420
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a7/
LA  - en
ID  - JMAG_2013_9_3_a7
ER  - 
%0 Journal Article
%A N. I. Zhukova
%T Local and Global Stability of Compact Leaves and Foliations
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2013
%P 400-420
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a7/
%G en
%F JMAG_2013_9_3_a7
N. I. Zhukova. Local and Global Stability of Compact Leaves and Foliations. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 3, pp. 400-420. http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a7/

[1] R. A. Blumenthal, J. J. Hebda, “Complementary Distributions wich Preserve the Leaf Geometry and Applications to Totally Geodesic Foliations”, Quart. J. Math., 35:140 (1984), 383–392 | DOI | MR | Zbl

[2] R. A. Blumenthal, “Stability Theorems for Conformal Foliations”, Proc. AMS, 91:3 (1984), 485–491 | DOI | MR | Zbl

[3] R. Blumenthal, “Cartan Submersions and Cartan foliations”, Ill. Math. J., 31 (1987), 327–343 | MR | Zbl

[4] A. Candel, L. Conlon, Foliations, v. I, Graduate Studies in Math., 23, 2000 | MR | Zbl

[5] P. D. Carrasco, Compact Dynamical Foliations, A thesis of PhD, Uni. of Toronto, 2010 | MR

[6] H. Colman, S. Hurder, “LS-category of Compact Hausdorff Foliations”, Trans. Amer. Math. Soc., 356 (2004), 1463–1487 | DOI | MR | Zbl

[7] K. Decesaro, T. Nagano, “On Compact Foliations”, Proc. Symp. Pure Math., 27, 1975, 277–281 | DOI | MR

[8] R. Edwars, K. Millet, D. Sullivan, “Foliations with All Leaves Compact”, Topology, 16 (1977), 13–32 | DOI | MR

[9] C. Ehresmann, “Sur la Theorie des Varietes Feuilletees”, Rend. di Mat. e delle sue appl., Serie V, X (1951) | MR | Zbl

[10] D. Epstein, “Periodic Flows on Three-Manifolds”, Ann. Math., 95:2 (1972), 66–82 | DOI | MR | Zbl

[11] D. Epstein, “Foliations with All Leaves Compact”, Ann. Inst. Fourier, 26:1 (1976), 265–282 | DOI | MR | Zbl

[12] D. Epstein, E. Fogt, “A Counterexample to the Periodic Orbit Conjecture in Codimension 3”, Ann. Math., 108:3 (1978), 539–552 | DOI | MR | Zbl

[13] D. Epstein, K. Millett, D. Tischler, “Leaves without Holonomy”, J. London Math. Soc., 16 (1977), 548–552 | DOI | MR | Zbl

[14] D. B. Fuks, “Foliations”, J. Soviet Math., 18:2 (1982), 255–291 | DOI | MR

[15] A. Gogolev, Partially Hyperbolic Diffeomorphisms with Compact Center Foliations, 28 Apr. 2011, arXiv: 1104.5464v1 [mathDS] | MR

[16] K. Millett, “Compact Foliations”, Lect. Notes Math., 484, 1975, 277–287 | DOI | MR | Zbl

[17] P. Molino, Riemannian Foliations, Progress in Math., Birkhauser, Boston, 1988 | MR | Zbl

[18] R. S. Palais, Global Formulation of the Lie Theory of Transformations Groups, Mem. Amer. Math. Soc., 22, 1957 | MR | Zbl

[19] J. V. Pereira, “Global Stability for Holomorphic Foliations on Kaehler Manfolds”, Qual. Theory Dyn. Syst., 2 (2001), 381–384 | DOI | MR

[20] G. Reeb, Sur Certaines Proprietes Topologiques des Varietes Feuillelees, Actualite Sci. Indust., 1183, Hermann, Paris, 1952 | MR | Zbl

[21] H. Rummler, “Quelques Notions Simples en Geometrie Riemannienne et leurs Applications aux Feuilletages Compacts”, Comment. Math. Helv., 54 (1979), 224–239 | DOI | MR | Zbl

[22] D. Sullivan, “A Counterexample to the Periodic Orbit conjecture”, Publ. Math. IHES, 46:1 (1976), 5–14 | DOI | MR | Zbl

[23] I. Tamura, Topology of foliations, Iwanami Shoten, Japan, 1979 | MR

[24] E. Vogt, “Foliations of Codimension 2 with All Leaves Compact”, Manuscripta Math., 18:2 (1976), 187–212 | DOI | MR | Zbl

[25] H. Winkelnkemper, “Graph of a Foliation”, Ann. Global Anal. Geom., 1:3 (1983), 51–75 | DOI | MR | Zbl

[26] R. A. Wolak, “Foliations Admitting Transverse Systems of Differential Equations”, Comp. Math., 67 (1988), 89–101 | MR | Zbl

[27] R. A. Wolak, Geometric Structures on Foliated Manifolds, Publications del Departamento de Geometria y Topologia, Universidad de Santiago de Compostella, No 76, 1989

[28] R. A. Wolak, “Leaves of Foliations with Transverse $G$-structures of Finite Type”, Pub. UAB, 33 (1989), 153–162 | MR | Zbl

[29] R. A. Wolak, “Graphs, Echresmann Connections and Vanishing Cycles”, Diff. Geom. and Appl. Proc. Conf. (Aug. 28–Sept. 1, 1996, Brno), 345–352 | MR | Zbl

[30] Yoo Hwal Lan, “Existence of Complete Metrics of Riemannian Foliation”, Math. J. Toyama Univ., 15 (1992), 35–38 | MR | Zbl

[31] N. I. Zhukova, Graph of a Foliation with an Eresmann Connection and some its Applications, Dep. No 1154-A90, VINITI, 1990, 53 pp. (Russian)

[32] N. I. Zhukova, “The Graph of a Foliation with Ehresmann Connection and Stability of Leaves”, Rus. Mat. (Izv. VUZ. Mat.), 38:2 (1994), 76–79 | MR | Zbl

[33] N. I. Zhukova, “Properties of Graphs of Ehresmann Foliations”, Vestnik NNGU, ser. Mat., 1 (2004), 77–91 (Russian)

[34] N. I. Zhukova, “Singular Foliations with Ehresmann Connections and their Holonomy Groupoids”, Banach Center Publ., 76, 2007, 471–490 | DOI | MR | Zbl

[35] N. I. Zhukova, “Minimal Sets of Cartan Foliations”, Proc. Steklov Inst. Mat., 256, 2007, 105–135 | DOI | MR | Zbl

[36] N. I. Zhukova, “Complete Foliations with Transversal Rigid Geometries and Their Basic Automorphisms”, Bull. Peoples' Friendship Univ. of Russia, Ser. Math. Inform. Sci. Phys., 2009, no. 2, 14–35

[37] N. I. Zhukova, “Attractors and an Analog of the Lichnerowicz Conjecture for Conformal Foliations”, Sib. Mat. Zh., 52:3 (2011), 555–574 | DOI | MR | Zbl