@article{JMAG_2013_9_3_a6,
author = {A. N. Syrovatsky},
title = {On the {Perturbation} of {Self-Adjoint} {Operators} with {Absolutely} {Continuous} {Spectrum}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {392--399},
year = {2013},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a6/}
}
TY - JOUR AU - A. N. Syrovatsky TI - On the Perturbation of Self-Adjoint Operators with Absolutely Continuous Spectrum JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2013 SP - 392 EP - 399 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a6/ LA - en ID - JMAG_2013_9_3_a6 ER -
A. N. Syrovatsky. On the Perturbation of Self-Adjoint Operators with Absolutely Continuous Spectrum. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 3, pp. 392-399. http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a6/
[1] N. I. Akhiezer, Lectures on Integral Transforms, AMS, Providence, RI, 1988 | MR | Zbl
[2] N. I. Akhiezer, I. M. Glazman, Theory of Linear Operators in Hilbert Space, v. 1, Vyshcha shkola, Kharkiv, 1977 (Russian) | MR
[3] N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Gos. Izd. Fiz.-Mat. Lit., M., 1961 (Russian)
[4] K. O. Friedrichs, “Uber die Spektralzerlegung eines Integral-operators”, Math. Ann., 115 (1938), 259–272 | DOI | MR
[5] F. D. Gakhov, Boundary Value Problems, 3d ed., Nauka, M., 1977 (Russian) | MR
[6] T. Kato, Perturbation Theory of Linear Operators, Mir, M., 1972 (Russian) | MR | Zbl
[7] F. Rellich, “Storumgtheory der Spektralzerlegung, I”, Math. Ann., 113 (1936), 600–619 | DOI | MR
[8] M. Rozenblum, “Perturbation of the Continuous Spectrum and Unitary Equivalence”, Pacif. J. Math., 7:1 (1957), 997–1010 | DOI | MR
[9] H. Weyl, “Uber Beschrankte Quadratishe Formen, deren Differenz Vollstetig ist”, Rend. Circolo Mat. Palermo, 27 (1909), 373–392 | DOI | Zbl