Some Applications of Meijer $G$-Functions as Solutions of Differential Equations in Physical Models
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 3, pp. 379-391 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we aim to show that the Meijer $G$-functions can serve to find explicit solutions of partial differential equations (PDEs) related to some mathematical models of physical phenomena, as for example, the Laplace equation, the diffusion equation and the Schr$\ddot{o}$dinger equation. Usually, the first step in solving such equations is to use the separation of variables method to reduce them to ordinary differential equations (ODEs). Very often this equation happens to be a case of the linear ordinary differential equation satisfied by the $G$-function, and so, by proper selection of its orders $m; n; p; q$ and the parameters, we can find the solution of the ODE explicitly. We illustrate this approach by proposing solutions as: the potential function $\Phi$, the temperature function $T$ and the wave function $\Psi$, all of which are symmetric product forms of the Meijer $G$-functions. We show that one of the three basic univalent Meijer $G$-functions, namely $G^{1,0}_{0,2},$ appears in all the mentioned solutions.
@article{JMAG_2013_9_3_a5,
     author = {A. Pishkoo and M. Darus},
     title = {Some {Applications} of {Meijer} $G${-Functions} as {Solutions} of {Differential} {Equations} in {Physical} {Models}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {379--391},
     year = {2013},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a5/}
}
TY  - JOUR
AU  - A. Pishkoo
AU  - M. Darus
TI  - Some Applications of Meijer $G$-Functions as Solutions of Differential Equations in Physical Models
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2013
SP  - 379
EP  - 391
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a5/
LA  - en
ID  - JMAG_2013_9_3_a5
ER  - 
%0 Journal Article
%A A. Pishkoo
%A M. Darus
%T Some Applications of Meijer $G$-Functions as Solutions of Differential Equations in Physical Models
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2013
%P 379-391
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a5/
%G en
%F JMAG_2013_9_3_a5
A. Pishkoo; M. Darus. Some Applications of Meijer $G$-Functions as Solutions of Differential Equations in Physical Models. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 3, pp. 379-391. http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a5/

[1] V. Kiryakova, Generalized Fractional Calculus and Applications, Longman, Harlow, UK, 1994 | MR | Zbl

[2] E. E. Fitchard, V. Franco, “Differential Properties of Meijer's $G$-function”, J. Phys. A, 13 (1980), 2331–2340 | DOI | MR | Zbl

[3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Application of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[4] A. P. Prudnikov, I. U. A. Brychkov, O. I. Marichev, Integrals and Series: Some More Special Functions, Gordon Breach, New York, 1992

[5] A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higher Transcendental Functions, v. 1–3, McGraw-Hill, New York, 1953 | MR

[6] K. Roach, “Meijer's $G$-function Representations”, ISSAC'97-Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 1997, 205–211 | DOI | MR | Zbl

[7] R. K. Saxena, A. M. Mathai, H. J. Haubold, “Astrophysical Thermonuclear Functions for Boltzmann–Gibbs Statistics and Tsallis Statistics”, Physica A, 344:3–4 (2004), 649–656 | DOI | MR

[8] M. Daoud, “Photon-Added Coherent States for Exactly Solvable Hamiltonians”, Phys. Lett., 305:3–4 (2002), 135–143 | DOI | MR | Zbl

[9] A. Pishkoo, M. Darus, “Fractional Differintegral Transformations of Univalent Meijer's $G$-functions”, J. Ineq. Appl., 2012:36 (2012), 1–10 | MR

[10] V. Kiryakova, “All the Special Functions are Fractional Differintegrals of Elementary Functions”, J. Physica A, 30:14 (1997), 5085–5103 | MR | Zbl

[11] V. Kiryakova, “The Special Functions of Fractional Calculus as Generalized Fractional Calculus Operators of Some Basic Functions”, Computers and Mathematics with Appl., 59:3 (2010), 1128–1141 | DOI | MR | Zbl

[12] S. Hassani, Mathematical Physics, Springer-Verlag, New York, 1998 | MR

[13] L. C. Andrews, Special Functions for Engineers and Applied Mathematicians, MacMillan, New York, 1985 | MR

[14] Y. L. Luke, The Special Functions and Their Approximations, v. I, Complex Variables, Academic Press, New York, 1969 | Zbl

[15] A. U. Klimyik, “Meijer $G$-function”, Encyclopaedia of Mathematics, ed. H. Michiel, Springer, Berlin, 2001

[16] R. A. Askey, “Meijer $G$-function”, NIST Handbook of Mathematical Functions, eds. D. Adri, B. Olde, Cambridge University Press, Cambridge, 2010 | MR