@article{JMAG_2013_9_3_a3,
author = {H. M. Huseynov and J. A. Osmanli},
title = {Inverse {Scattering} {Problem} for {One-Dimensional} {Schr\"odinger} {Equation} with {Discontinuity} {Conditions}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {332--359},
year = {2013},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a3/}
}
TY - JOUR AU - H. M. Huseynov AU - J. A. Osmanli TI - Inverse Scattering Problem for One-Dimensional Schrödinger Equation with Discontinuity Conditions JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2013 SP - 332 EP - 359 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a3/ LA - en ID - JMAG_2013_9_3_a3 ER -
%0 Journal Article %A H. M. Huseynov %A J. A. Osmanli %T Inverse Scattering Problem for One-Dimensional Schrödinger Equation with Discontinuity Conditions %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2013 %P 332-359 %V 9 %N 3 %U http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a3/ %G en %F JMAG_2013_9_3_a3
H. M. Huseynov; J. A. Osmanli. Inverse Scattering Problem for One-Dimensional Schrödinger Equation with Discontinuity Conditions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 3, pp. 332-359. http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a3/
[1] L. D. Faddeev, “On the Connection of the $S$-matrix and the Potential for the One-Dimensional Schrödinger Operator”, Dokl. Akad. Nauk SSSR, 121:1 (1958), 63–66 (Russian) | MR | Zbl
[2] L. D. Faddeev, “Properties of the $S$-matrix of the One-Dimensional Schrödinger Equations”, Trudy Mat. Inst. Steklov, 73, 1964, 314–336 (Russian) | MR | Zbl
[3] Sturm–Liouville Operators and Applications, Birkhäuser OT, 22, Basel–Boston, 1986 | MR | MR | Zbl
[4] I. M. Guseinov, “On the Continuity of the Coefficient of Reflection of the Schrödinger One-Dimensional Equation”, Diff. Uravn., 21:11 (1985), 1993–1995 (Russian) | MR
[5] E. I. Zubkova, F. S. Rofe-Beketov, “Inverse Scattering Problem on the Axis for the Schrödinger Operator with Triangular $2\times 2$ Matrix Potential. I: Main Theorem”, J. Math. Phys., Anal. Geom., 3:1 (2007), 47–60 | MR | Zbl
[6] E. I. Zubkova, F. S. Rofe-Beketov, “Inverse Scattering Problem on the Axis for the Schrödinger Operator with Triangular $2\times 2$ Matrix Potential. II: Addition of the Discrete Spectrum”, J. Math. Phys., Anal. Geom., 3:2 (2007), 176–195 | MR | Zbl
[7] E. I. Zubkova, F. S. Rofe-Beketov, “Necessary and Sufficient Conditions in Inverse Scattering Operator with Triangular $2\times 2$ Matrix Potential”, J. Math. Phys., Anal. Geom., 5:3 (2009), 296–309 | MR | Zbl
[8] F. S. Rofe-Beketov, E. I. Zubkova, “Inverse Scattering Problem on the Axis for the Triangular $2\times 2$ Matrix Potential with a Virtual Level”, Methods of Functional Analysis and Topology, 15:4 (2009), 301–321 | MR | Zbl
[9] O. H. Hald, “Discontinuous Inverse Eigenvalue Problems”, Comm. Pure and Appl. Math., 37 (1984), 539–577 | DOI | MR | Zbl
[10] D. G. Shepelsky, “The Inverse Problem of Reconstruction of the Medium's Condictivity in a Class of Discontinuous and Functions”, Adv. in Sov. Math., 19 (1994), 209–232 | MR | Zbl
[11] M. Kobayashi, “A Uniqueness Proof of Discontinuous Inverse Sturm–Liouville Problems with Symmetric Potentials”, Inverse Problems, 5:5 (1989), 767–781 | DOI | MR | Zbl
[12] G. Frelling, V. Yurko, “Inverse Spectral Problems for Singular Non-Selfadjoint Differential Operators with Discontinuonities in an Interior Point”, Inverse Problems, 18 (2002), 757–773 | DOI | MR
[13] I. M. Guseinov, R. T. Pashaev, “On an Inverse Problem for a Second-Order Differential Equation”, Russian Math. Surv., 57:3 (2002), 597–598 (Russian) | DOI | MR | Zbl