On Analytic and Subharmonic Functions in Unit Disc Growing Near a Part of the Boundary
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 3, pp. 304-315 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper there was found an analog of the Blaschke condition for analytic and subharmonic functions in the unit disc, which grow at most as a given function $\varphi$ near some subset of the boundary.
@article{JMAG_2013_9_3_a1,
     author = {S. Ju. Favorov and L. D. Radchenko},
     title = {On {Analytic} and {Subharmonic} {Functions} in {Unit} {Disc} {Growing} {Near} a {Part} of the {Boundary}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {304--315},
     year = {2013},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a1/}
}
TY  - JOUR
AU  - S. Ju. Favorov
AU  - L. D. Radchenko
TI  - On Analytic and Subharmonic Functions in Unit Disc Growing Near a Part of the Boundary
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2013
SP  - 304
EP  - 315
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a1/
LA  - en
ID  - JMAG_2013_9_3_a1
ER  - 
%0 Journal Article
%A S. Ju. Favorov
%A L. D. Radchenko
%T On Analytic and Subharmonic Functions in Unit Disc Growing Near a Part of the Boundary
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2013
%P 304-315
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a1/
%G en
%F JMAG_2013_9_3_a1
S. Ju. Favorov; L. D. Radchenko. On Analytic and Subharmonic Functions in Unit Disc Growing Near a Part of the Boundary. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 3, pp. 304-315. http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a1/

[1] S. Favorov, L. Golinskii, “A Blaschke-type Condition for Analytic and Subharmonic Functions and Application to Contraction Operators”, Amer. Math. Soc. Transl., 226:2 (2009), 37–47 | MR | Zbl

[2] G. Kramer, Mathematical Methods of Statistic, Mir, M., 1975 (in Russian) | MR

[3] T. Ransford, Potential Theory in the Complex Plane, London Math. Soc. Student Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[4] J. Garnett, Bounded Analytic Functions, Graduate Texts in Mathematics, 236, Springer, New York, 2007 | MR

[5] A. Borichev, L. Golinskii, S. Kupin, “A Blaschke-type Condition and its Application to Complex Jacobi Matrices”, Bull. London Math. Soc., 41 (2009), 117–123 | DOI | MR | Zbl

[6] M. M. Djrbashian, “Theory of Factorization of Functions Meromorphic in the Disk”, Proc. of the ICM (Vancouver, B.C., 1974), v. 2, USA, 1975, 197–202

[7] W. K. Hayman, B. Korenblum, “A Critical Growth Rate for Functions Regular in a Disk”, Michigan Math. J., 27 (1980), 21–30 | DOI | MR | Zbl

[8] F. A. Shamoyan, “On Zeros of Analytic in the Disc Functions Growing near its Boundary”, J. Contemp. Math. Anal., Armen. Acad. Sci., 18:1 (1983) | MR | Zbl

[9] A. M. Jerbashian, “On the Theory of Weighted Classes of Area Integrable Regular Functions”, Complex Variables, 50 (2005), 155–183 | DOI | MR | Zbl

[10] R. Nevanlinna, Single-Valued Analytic Functions, Gostehizdat, M., 1941 (in Russian)