The System of Kaup Equations with a Self-Consistent Source in the Class of Periodic Functions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 3, pp. 287-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, a method of the inverse spectral problem is used to integrate the system of Kaup equations with a self-consistent source in the class of periodic functions.
@article{JMAG_2013_9_3_a0,
     author = {A. Cabada and A. Yakhshimuratov},
     title = {The {System} of {Kaup} {Equations} with a {Self-Consistent} {Source} in the {Class} of {Periodic} {Functions}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {287--303},
     year = {2013},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a0/}
}
TY  - JOUR
AU  - A. Cabada
AU  - A. Yakhshimuratov
TI  - The System of Kaup Equations with a Self-Consistent Source in the Class of Periodic Functions
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2013
SP  - 287
EP  - 303
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a0/
LA  - en
ID  - JMAG_2013_9_3_a0
ER  - 
%0 Journal Article
%A A. Cabada
%A A. Yakhshimuratov
%T The System of Kaup Equations with a Self-Consistent Source in the Class of Periodic Functions
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2013
%P 287-303
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a0/
%G en
%F JMAG_2013_9_3_a0
A. Cabada; A. Yakhshimuratov. The System of Kaup Equations with a Self-Consistent Source in the Class of Periodic Functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 3, pp. 287-303. http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a0/

[1] D. J. Kaup, “A Higher-Order Water-Wave Equation and the Method for Solving It”, Prog. Theor. Phys., 54 (1975), 396–408 | DOI | MR | Zbl

[2] V. B. Matveev, M. I. Yavor, “Solutions Presque Periodiques et a $N$-solitons de l'Equation Hydrodynamique Nonlineaire de Kaup”, Ann. Inst. Henri Poincare, Sect. A, 31 (1979), 25–41 | MR | Zbl

[3] A. O. Smirnov, “Real Finite-Gap Regular Solutions of the Kaup–Boussinesq Equation”, Theor. Math. Phys., 66 (1986), 19–31 | DOI | MR | Zbl

[4] A. O. Smirnov, “A Matrix Analogue of Appell's Theorem and Reductions of Multidimensional Riemann Theta-functions”, Math. USSR-Sb., 61 (1988), 379–388 | DOI | MR | Zbl

[5] Yu. A. Mitropol'skii, N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, V. G. Samoilenko, Integrable Dynamical Systems: Spectral and Differential Geometric Aspects, Naukova Dumka, Kiev, 1987 (in Russian) | MR

[6] M. Jaulent, “On an Inverse Scattering Problem with an Energy-Dependent Potential”, Ann. Inst. Henri Poincare, 27:4 (1972), 363–378 | MR

[7] M. Jaulent, I. Miodek, “Nonlinear Evolution Equation Associated with Energy-Dependent Schrödinger Potentials”, Lett. Math. Phys., 1:3 (1976), 243–250 | DOI | MR | Zbl

[8] M. Jaulent, C. Jean, “The Inverse Problem for the One-dimensional Schrödinger Equation with an Energy-Dependent Potential, I”, Ann. Inst. Henri Poincare, 25:2 (1976), 105–118 | MR | Zbl

[9] M. Jaulent, C. Jean, “The Inverse Problem for the One-dimensional Schrödinger Equation with an Energy-Dependent Potential, II”, Ann. Inst. Henri Poincare, 25:2 (1976), 119–137 | MR | Zbl

[10] F. G. Maksudov, G. Sh. Guseinov, “On Solution of the Inverse Scattering Problem for a Quadratic Pencil of One-dimensional Schrödinger Operators on the Whole Axis”, Soviet Math. Dokl., 34:1 (1987), 34–38 | Zbl

[11] V. A. Yurko, “An Inverse Problem for Differential Operator Pencils”, Sb. Math., 191:10 (2000), 1561–1586 | DOI | MR | Zbl

[12] M. G. Gasymov, G. Sh. Guseinov, “The Determination of a Diffusion Operator from the Spectral Data”, Dokl. Akad. Nauk Azerb. SSR, 37:2 (1981), 19–23 (in Russian) | MR | Zbl

[13] Moscow Univ. Math. Bull., 39 (1984) | MR | MR

[14] G. Sh. Guseinov, “Spectrum and Eigenfunction Expansions of a Quadratic Pencil of Sturm–Liouville Operators with Periodic Coefficients”, Spectral Theory of Operators and its Applications, 6, “Elm”, Baku, 1985, 56–97 (in Russian) | MR

[15] G. Sh. Guseinov, “On Spectral Analysis of a Quadratic Pencil of Sturm–Liouville Operators”, Soviet Math. Dokl., 32:3 (1985), 1859–1862 | MR

[16] G. Sh. Guseinov, “Inverse Problems for a Quadratic Pencil of Sturm–Liouville Operators on a Finit Interval”, Spectral Theory of Operators and its Applications, 7, “Elm”, Baku, 1986, 51–101 (in Russian) | MR

[17] B. A. Babadzhanov, A. B. Khasanov, A. B. Yakhshimuratov, “On the Inverse Problem for a Quadratic Pencil of Sturm–Liouville Operators with Periodic Potential”, Diff. Eqs., 41:3 (2005), 310–318 | DOI | MR | Zbl

[18] A. B. Yakhshimuratov, “Analogue of the Inverse Theorem of Borg for a Quadratic Pencil of Operators of Sturm–Liouville”, Bull. Eletski State University. Ser. Math. Comp. Math., 8:1 (2005), 121–126 (in Russian)

[19] P. G. Grinevich, I. A. Taimanov, “Spectral Conservation Laws for Periodic Nonlinear Equations of the Melnikov Type”, Amer. Math. Soc. Transl. Ser. 2, 224 (2008), 125–138 | MR | Zbl

[20] A. B. Khasanov, A. B. Yakhshimuratov, “The Korteweg-de Vries Equation with a Self-Consistent Source in the Class of Periodic Functions”, Theor. Math. Phys., 164 (2010), 1008–1015 | DOI | Zbl

[21] A. B. Yakhshimuratov, “The Nonlinear Schrödinger Equation with a Self-Consistent Source in the Class of Periodic Functions”, Math. Phys., Anal. and Geom., 14 (2011), 153–169 | DOI | MR | Zbl

[22] G. Sh. Guseinov, Asymptotic Formulas for Solutions and Eigenvalues of Quadratic Pencil of Sturm–Liouville Equations, Preprint No 113, Inst. Phys. Akad. Nauk Azerb. SSR, Baku, 1984 (in Russian)

[23] VNU Sci. Press, Utrecht, 1987 | MR | Zbl