@article{JMAG_2013_9_3_a0,
author = {A. Cabada and A. Yakhshimuratov},
title = {The {System} of {Kaup} {Equations} with a {Self-Consistent} {Source} in the {Class} of {Periodic} {Functions}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {287--303},
year = {2013},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a0/}
}
TY - JOUR AU - A. Cabada AU - A. Yakhshimuratov TI - The System of Kaup Equations with a Self-Consistent Source in the Class of Periodic Functions JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2013 SP - 287 EP - 303 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a0/ LA - en ID - JMAG_2013_9_3_a0 ER -
%0 Journal Article %A A. Cabada %A A. Yakhshimuratov %T The System of Kaup Equations with a Self-Consistent Source in the Class of Periodic Functions %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2013 %P 287-303 %V 9 %N 3 %U http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a0/ %G en %F JMAG_2013_9_3_a0
A. Cabada; A. Yakhshimuratov. The System of Kaup Equations with a Self-Consistent Source in the Class of Periodic Functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 3, pp. 287-303. http://geodesic.mathdoc.fr/item/JMAG_2013_9_3_a0/
[1] D. J. Kaup, “A Higher-Order Water-Wave Equation and the Method for Solving It”, Prog. Theor. Phys., 54 (1975), 396–408 | DOI | MR | Zbl
[2] V. B. Matveev, M. I. Yavor, “Solutions Presque Periodiques et a $N$-solitons de l'Equation Hydrodynamique Nonlineaire de Kaup”, Ann. Inst. Henri Poincare, Sect. A, 31 (1979), 25–41 | MR | Zbl
[3] A. O. Smirnov, “Real Finite-Gap Regular Solutions of the Kaup–Boussinesq Equation”, Theor. Math. Phys., 66 (1986), 19–31 | DOI | MR | Zbl
[4] A. O. Smirnov, “A Matrix Analogue of Appell's Theorem and Reductions of Multidimensional Riemann Theta-functions”, Math. USSR-Sb., 61 (1988), 379–388 | DOI | MR | Zbl
[5] Yu. A. Mitropol'skii, N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, V. G. Samoilenko, Integrable Dynamical Systems: Spectral and Differential Geometric Aspects, Naukova Dumka, Kiev, 1987 (in Russian) | MR
[6] M. Jaulent, “On an Inverse Scattering Problem with an Energy-Dependent Potential”, Ann. Inst. Henri Poincare, 27:4 (1972), 363–378 | MR
[7] M. Jaulent, I. Miodek, “Nonlinear Evolution Equation Associated with Energy-Dependent Schrödinger Potentials”, Lett. Math. Phys., 1:3 (1976), 243–250 | DOI | MR | Zbl
[8] M. Jaulent, C. Jean, “The Inverse Problem for the One-dimensional Schrödinger Equation with an Energy-Dependent Potential, I”, Ann. Inst. Henri Poincare, 25:2 (1976), 105–118 | MR | Zbl
[9] M. Jaulent, C. Jean, “The Inverse Problem for the One-dimensional Schrödinger Equation with an Energy-Dependent Potential, II”, Ann. Inst. Henri Poincare, 25:2 (1976), 119–137 | MR | Zbl
[10] F. G. Maksudov, G. Sh. Guseinov, “On Solution of the Inverse Scattering Problem for a Quadratic Pencil of One-dimensional Schrödinger Operators on the Whole Axis”, Soviet Math. Dokl., 34:1 (1987), 34–38 | Zbl
[11] V. A. Yurko, “An Inverse Problem for Differential Operator Pencils”, Sb. Math., 191:10 (2000), 1561–1586 | DOI | MR | Zbl
[12] M. G. Gasymov, G. Sh. Guseinov, “The Determination of a Diffusion Operator from the Spectral Data”, Dokl. Akad. Nauk Azerb. SSR, 37:2 (1981), 19–23 (in Russian) | MR | Zbl
[13] Moscow Univ. Math. Bull., 39 (1984) | MR | MR
[14] G. Sh. Guseinov, “Spectrum and Eigenfunction Expansions of a Quadratic Pencil of Sturm–Liouville Operators with Periodic Coefficients”, Spectral Theory of Operators and its Applications, 6, “Elm”, Baku, 1985, 56–97 (in Russian) | MR
[15] G. Sh. Guseinov, “On Spectral Analysis of a Quadratic Pencil of Sturm–Liouville Operators”, Soviet Math. Dokl., 32:3 (1985), 1859–1862 | MR
[16] G. Sh. Guseinov, “Inverse Problems for a Quadratic Pencil of Sturm–Liouville Operators on a Finit Interval”, Spectral Theory of Operators and its Applications, 7, “Elm”, Baku, 1986, 51–101 (in Russian) | MR
[17] B. A. Babadzhanov, A. B. Khasanov, A. B. Yakhshimuratov, “On the Inverse Problem for a Quadratic Pencil of Sturm–Liouville Operators with Periodic Potential”, Diff. Eqs., 41:3 (2005), 310–318 | DOI | MR | Zbl
[18] A. B. Yakhshimuratov, “Analogue of the Inverse Theorem of Borg for a Quadratic Pencil of Operators of Sturm–Liouville”, Bull. Eletski State University. Ser. Math. Comp. Math., 8:1 (2005), 121–126 (in Russian)
[19] P. G. Grinevich, I. A. Taimanov, “Spectral Conservation Laws for Periodic Nonlinear Equations of the Melnikov Type”, Amer. Math. Soc. Transl. Ser. 2, 224 (2008), 125–138 | MR | Zbl
[20] A. B. Khasanov, A. B. Yakhshimuratov, “The Korteweg-de Vries Equation with a Self-Consistent Source in the Class of Periodic Functions”, Theor. Math. Phys., 164 (2010), 1008–1015 | DOI | Zbl
[21] A. B. Yakhshimuratov, “The Nonlinear Schrödinger Equation with a Self-Consistent Source in the Class of Periodic Functions”, Math. Phys., Anal. and Geom., 14 (2011), 153–169 | DOI | MR | Zbl
[22] G. Sh. Guseinov, Asymptotic Formulas for Solutions and Eigenvalues of Quadratic Pencil of Sturm–Liouville Equations, Preprint No 113, Inst. Phys. Akad. Nauk Azerb. SSR, Baku, 1984 (in Russian)