On the Long-Time Behavior of the Thermoelastic Plates with Second Sound
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 2, pp. 191-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The relation between the thermoelastic Cattaneo model and the thermoelastic Gurtin–Pipkin model is established. The existence of the compact global attractor of the Cattaneo–Mindlin plate model is proved and its properties are studied.
@article{JMAG_2013_9_2_a3,
     author = {T. B. Fastovska},
     title = {On the {Long-Time} {Behavior} of the {Thermoelastic} {Plates} with {Second} {Sound}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {191--206},
     year = {2013},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a3/}
}
TY  - JOUR
AU  - T. B. Fastovska
TI  - On the Long-Time Behavior of the Thermoelastic Plates with Second Sound
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2013
SP  - 191
EP  - 206
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a3/
LA  - en
ID  - JMAG_2013_9_2_a3
ER  - 
%0 Journal Article
%A T. B. Fastovska
%T On the Long-Time Behavior of the Thermoelastic Plates with Second Sound
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2013
%P 191-206
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a3/
%G en
%F JMAG_2013_9_2_a3
T. B. Fastovska. On the Long-Time Behavior of the Thermoelastic Plates with Second Sound. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 2, pp. 191-206. http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a3/

[1] D. S. Chandrasekharaiah, “Hyperbolic Thermoelasticity: A Review of Recent Literature”, Appl. Mech. Rev., 51 (1998), 705–729 | DOI

[2] J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, 1989 | MR

[3] P. Schiavone, R. J. Tait, “Thermal Effects in Mindlin-Type Plates”, Q. Jl. Mech. Appl. Math., 46 (1993), 27–39 | DOI | MR | Zbl

[4] J. E. Muñoz Rivera, R. Racke, “Global Stability for Damped Timoshenko Systems”, Disc. Cont. Dyn. Sys., 9 (2003), 1625–1639 | DOI | MR | Zbl

[5] J. E. Muñoz Rivera, R. Racke, “Mildly Dissipative Nonlinear Timoshenko Systems — Global Existence and Exponential Stability”, J. Math. Anal. Appl., 276:1 (2002), 248–278 | DOI | MR | Zbl

[6] H. D. Fernández Sare, R. Racke, “On the Stability of Damped Timoshenko Systems: Cattaneo Versus Fourier Law”, Arch. Rational Mech. Anal., 194 (2009), 221–251 | DOI | MR | Zbl

[7] S. A. Messaoudi, M. Pokojovy, B. Said-Houari, “Nonlinear Damped Timoshenko Systems with Second Sound — Global Existence and Exponential Stability”, Math. Meth. Appl. Sci., 32:5 (2009), 505–534 | DOI | MR | Zbl

[8] I. Chueshov, I. Lasiecka, “Global Attractors for Mindlin–Timoshenko Plates and for Their Kirchhoff Limits”, Milan J. Math., 74 (2006), 117–138 | DOI | MR | Zbl

[9] T. Fastovska, “Upper Semicontinuous Attractor for a 2D Mindlin–Timoshenko Thermoelastic Model with Memory”, Commun. Pure Appl. Anal., 6:1 (2007), 83–101 | DOI | MR | Zbl

[10] T. Fastovska, “Upper Semicontinuous Attractor for a 2D Mindlin–Timoshenko Thermo-Viscoelastic Model with Memory”, Nonlinear Analysis TMA, 71:10 (2009), 4833–4851 | DOI | MR | Zbl

[11] M. E. Gurtin, A. C. Pipkin, “A General Theory of Heat Conduction with Finite Wave Speeds”, Arch. Rational Mech. Anal., 31 (1968), 113–126 | DOI | MR | Zbl

[12] Acta, Kharkov, 2002 | Zbl

[13] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988 | MR | Zbl

[14] S. Jiang, R. Racke, Evolution Equations in Thermoelasticity, Monographs Surveys Pure Appl. Math., 112, Chapman/CRC, Boca Raton, 2000 | MR | Zbl