@article{JMAG_2013_9_2_a3,
author = {T. B. Fastovska},
title = {On the {Long-Time} {Behavior} of the {Thermoelastic} {Plates} with {Second} {Sound}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {191--206},
year = {2013},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a3/}
}
T. B. Fastovska. On the Long-Time Behavior of the Thermoelastic Plates with Second Sound. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 2, pp. 191-206. http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a3/
[1] D. S. Chandrasekharaiah, “Hyperbolic Thermoelasticity: A Review of Recent Literature”, Appl. Mech. Rev., 51 (1998), 705–729 | DOI
[2] J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, 1989 | MR
[3] P. Schiavone, R. J. Tait, “Thermal Effects in Mindlin-Type Plates”, Q. Jl. Mech. Appl. Math., 46 (1993), 27–39 | DOI | MR | Zbl
[4] J. E. Muñoz Rivera, R. Racke, “Global Stability for Damped Timoshenko Systems”, Disc. Cont. Dyn. Sys., 9 (2003), 1625–1639 | DOI | MR | Zbl
[5] J. E. Muñoz Rivera, R. Racke, “Mildly Dissipative Nonlinear Timoshenko Systems — Global Existence and Exponential Stability”, J. Math. Anal. Appl., 276:1 (2002), 248–278 | DOI | MR | Zbl
[6] H. D. Fernández Sare, R. Racke, “On the Stability of Damped Timoshenko Systems: Cattaneo Versus Fourier Law”, Arch. Rational Mech. Anal., 194 (2009), 221–251 | DOI | MR | Zbl
[7] S. A. Messaoudi, M. Pokojovy, B. Said-Houari, “Nonlinear Damped Timoshenko Systems with Second Sound — Global Existence and Exponential Stability”, Math. Meth. Appl. Sci., 32:5 (2009), 505–534 | DOI | MR | Zbl
[8] I. Chueshov, I. Lasiecka, “Global Attractors for Mindlin–Timoshenko Plates and for Their Kirchhoff Limits”, Milan J. Math., 74 (2006), 117–138 | DOI | MR | Zbl
[9] T. Fastovska, “Upper Semicontinuous Attractor for a 2D Mindlin–Timoshenko Thermoelastic Model with Memory”, Commun. Pure Appl. Anal., 6:1 (2007), 83–101 | DOI | MR | Zbl
[10] T. Fastovska, “Upper Semicontinuous Attractor for a 2D Mindlin–Timoshenko Thermo-Viscoelastic Model with Memory”, Nonlinear Analysis TMA, 71:10 (2009), 4833–4851 | DOI | MR | Zbl
[11] M. E. Gurtin, A. C. Pipkin, “A General Theory of Heat Conduction with Finite Wave Speeds”, Arch. Rational Mech. Anal., 31 (1968), 113–126 | DOI | MR | Zbl
[12] Acta, Kharkov, 2002 | Zbl
[13] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988 | MR | Zbl
[14] S. Jiang, R. Racke, Evolution Equations in Thermoelasticity, Monographs Surveys Pure Appl. Math., 112, Chapman/CRC, Boca Raton, 2000 | MR | Zbl