@article{JMAG_2013_9_2_a2,
author = {R. del Rio and M. Kudryavtsev and L. O. Silva},
title = {Inverse {Problems} for {Jacobi} {Operators} {II:~Mass} {Perturbations} of {Semi-Infinite} {Mass-Spring} {Systems}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {165--190},
year = {2013},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a2/}
}
TY - JOUR AU - R. del Rio AU - M. Kudryavtsev AU - L. O. Silva TI - Inverse Problems for Jacobi Operators II: Mass Perturbations of Semi-Infinite Mass-Spring Systems JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2013 SP - 165 EP - 190 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a2/ LA - en ID - JMAG_2013_9_2_a2 ER -
%0 Journal Article %A R. del Rio %A M. Kudryavtsev %A L. O. Silva %T Inverse Problems for Jacobi Operators II: Mass Perturbations of Semi-Infinite Mass-Spring Systems %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2013 %P 165-190 %V 9 %N 2 %U http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a2/ %G en %F JMAG_2013_9_2_a2
R. del Rio; M. Kudryavtsev; L. O. Silva. Inverse Problems for Jacobi Operators II: Mass Perturbations of Semi-Infinite Mass-Spring Systems. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 2, pp. 165-190. http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a2/
[1] N. I. Akhiezer, The Classical Moment Problem and Some related Questions in Analysis, Hafner Publishing Co., New York, 1965 | MR
[2] N. I. Akhiezer, I. M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications Inc., New York, 1993 | MR | Zbl
[3] J. M. Berezans'kiĭ, Exspansions in Eigenfunctions of Selfadjoint Operators, Transl. Math. Monographs, 17, Amer. Math. Sos., Providence, RI, 1968 | MR | Zbl
[4] M. Sh. Birman, M. Z. Solomjak, Spectral Theory of Selfadjoint Operators in Hilbert Space, Math. Appl. (Soviet Series), D. Reidel, Dordrecht, 1987 | MR
[5] M. T. Chu, G. H. Golub, Inverse Eigenvalue Problems: Theory Algorithms and Applications, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2005 | MR
[6] C. de Boor, G. H. Golub, “The Numerically Stable Reconstruction of a Jacobi Matrix from Spectral Data”, Linear Alg. Appl., 21:3 (1978), 245–260 | DOI | MR | Zbl
[7] R. del Rio, M. Kudryavtsev, Inverse Problems for Jacobi Operators. I: Interior Mass-Spring Perturbations in Finite Systems, arXiv: 1106.1691 | MR
[8] L. Fu, H. Hochstadt, “Inverse Theorems for Jacobi Matrices”, J. Math. Anal. Appl., 47 (1974), 162–168 | DOI | MR | Zbl
[9] F. Gesztesy, B. Simon, “$m$-functions and Inverse Spectral Analysis for Finite and Semi-Infinite Jacobi Matrices”, J. Anal. Math., 73 (1997), 267–297 | DOI | MR | Zbl
[10] F. Gesztesy, B. Simon, “On Local Borg–Marchenko Uniqueness Results”, Comm. Math. Phys., 211 (2000), 273–287 | DOI | MR | Zbl
[11] G. M. L. Gladwell, Inverse Problems in Vibration, Solid Mech. Appl., 119, Second ed., Kluwer Academic, Dordrecht, 2004 | MR | Zbl
[12] G. Guseĭnov, “The Determination of the Infinite Jacobi Matrix from Two Spectra”, Mat. Zametki, 23 (1978), 709–720 | MR | Zbl
[13] R. Z. Halilova, “An Inverse Problem”, Izv. Akad. Nauk AzSSR Ser. Fiz.-Tehn. Mat. Nauk, 1967:3–4 (1967), 169–175 (Russian) | MR
[14] H. Hochstadt, “On the Construction of a Jacobi Matrix from Spectral Data”, Linear Alg. Appl., 8 (1974), 435–446 | DOI | MR | Zbl
[15] T. Kato, Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften, 132, Second ed., Springer, Berlin–New York, 1976 | DOI | MR | Zbl
[16] B. Ja. Levin, Distribution of Zeros of Entire Functions, Transl. Math. Mono., 5, Amer. Math. Soc., Providence, RI, 1980 | MR
[17] V. A. Marchenko, Introduction to the Theory of Inverse Problems of Spectral Analysis, Akta, Kharkov, 2005 (Russian)
[18] V. A. Marchenko, T. V. Misyura, “Señalamientos Metodológicos y Didácticos al Tema: Problemas Inversos de la Teoría Espectral de Operadores de Dimensión Finita”, Monografías IIMAS-UNAM, 12, no. 28, 2004
[19] S. Naboko, I. Pchelintseva, L. O. Silva, “Discrete Spectrum in a Critical Coupling Case of Jacobi Matrices with Spectral Phase Transitions by Uniform Asymptotic Analysis”, J. Approx. Theory, 161:1 (2009), 314–336 | DOI | MR | Zbl
[20] Y. M. Ram, “Inverse Eigenvalue Problem for a Modified Vibrating System”, SIAM Appl. Math., 53 (1993), 1763–1775 | DOI | MR
[21] L. O. Silva, J. H. Toloza, “Jacobi Matrices with Rapidly Growing Weights Having Only Discrete Spectrum”, J. Math. Anal. Appl., 328:2 (2007), 1087–1107 | DOI | MR | Zbl
[22] L. O. Silva, R. Weder, “On the Two Spectra Inverse Problem for Semi-Infinite Jacobi Matrices”, Math. Phys. Anal. Geom., 3:9 (2006), 263–290 | MR | Zbl
[23] B. Simon, “The Classical Moment Problem as a Self-adjoint Finite Difference Operator”, Adv. Math., 137:1 (1998), 82–203 | DOI | MR | Zbl
[24] M. Spletzer, A. Raman, H. Sumali, J. P. Sullivan, “Highly Sensitive Mass Detection and Identification Using Vibration Localization in Coupled Microcantilever Arrays”, Appl. Phys. Lett., 92 (2008), 114102 | DOI
[25] M. Spletzer, A. Raman, A. Q. Wu, X. Xu, “Ultrasensitive Mass Sensing Using Mode Localization in Coupled Microcantilevers”, Appl. Phys. Lett., 88 (2006), 254102 | DOI
[26] G. Teschl, “Trace Formulas and Inverse Spectral Theory for Jacobi Operators”, Comm. Math. Phys., 196:1 (1998), 175–202 | DOI | MR | Zbl
[27] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surv. Mono., 72, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[28] E. C. Titchmarsh, The Theory of Functions, Oxford University Press, London, 1952 | Zbl