Inverse Problems for Jacobi Operators II: Mass Perturbations of Semi-Infinite Mass-Spring Systems
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 2, pp. 165-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an inverse spectral problem for infinite linear mass-spring systems with different configurations obtained by changing the first mass. We give results on the reconstruction of the system from the spectra of two configurations. Necessary and sufficient conditions for two real sequences to be the spectra of two modified systems are provided.
@article{JMAG_2013_9_2_a2,
     author = {R. del Rio and M. Kudryavtsev and L. O. Silva},
     title = {Inverse {Problems} for {Jacobi} {Operators} {II:~Mass} {Perturbations} of {Semi-Infinite} {Mass-Spring} {Systems}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {165--190},
     year = {2013},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a2/}
}
TY  - JOUR
AU  - R. del Rio
AU  - M. Kudryavtsev
AU  - L. O. Silva
TI  - Inverse Problems for Jacobi Operators II: Mass Perturbations of Semi-Infinite Mass-Spring Systems
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2013
SP  - 165
EP  - 190
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a2/
LA  - en
ID  - JMAG_2013_9_2_a2
ER  - 
%0 Journal Article
%A R. del Rio
%A M. Kudryavtsev
%A L. O. Silva
%T Inverse Problems for Jacobi Operators II: Mass Perturbations of Semi-Infinite Mass-Spring Systems
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2013
%P 165-190
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a2/
%G en
%F JMAG_2013_9_2_a2
R. del Rio; M. Kudryavtsev; L. O. Silva. Inverse Problems for Jacobi Operators II: Mass Perturbations of Semi-Infinite Mass-Spring Systems. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 2, pp. 165-190. http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a2/

[1] N. I. Akhiezer, The Classical Moment Problem and Some related Questions in Analysis, Hafner Publishing Co., New York, 1965 | MR

[2] N. I. Akhiezer, I. M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications Inc., New York, 1993 | MR | Zbl

[3] J. M. Berezans'kiĭ, Exspansions in Eigenfunctions of Selfadjoint Operators, Transl. Math. Monographs, 17, Amer. Math. Sos., Providence, RI, 1968 | MR | Zbl

[4] M. Sh. Birman, M. Z. Solomjak, Spectral Theory of Selfadjoint Operators in Hilbert Space, Math. Appl. (Soviet Series), D. Reidel, Dordrecht, 1987 | MR

[5] M. T. Chu, G. H. Golub, Inverse Eigenvalue Problems: Theory Algorithms and Applications, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2005 | MR

[6] C. de Boor, G. H. Golub, “The Numerically Stable Reconstruction of a Jacobi Matrix from Spectral Data”, Linear Alg. Appl., 21:3 (1978), 245–260 | DOI | MR | Zbl

[7] R. del Rio, M. Kudryavtsev, Inverse Problems for Jacobi Operators. I: Interior Mass-Spring Perturbations in Finite Systems, arXiv: 1106.1691 | MR

[8] L. Fu, H. Hochstadt, “Inverse Theorems for Jacobi Matrices”, J. Math. Anal. Appl., 47 (1974), 162–168 | DOI | MR | Zbl

[9] F. Gesztesy, B. Simon, “$m$-functions and Inverse Spectral Analysis for Finite and Semi-Infinite Jacobi Matrices”, J. Anal. Math., 73 (1997), 267–297 | DOI | MR | Zbl

[10] F. Gesztesy, B. Simon, “On Local Borg–Marchenko Uniqueness Results”, Comm. Math. Phys., 211 (2000), 273–287 | DOI | MR | Zbl

[11] G. M. L. Gladwell, Inverse Problems in Vibration, Solid Mech. Appl., 119, Second ed., Kluwer Academic, Dordrecht, 2004 | MR | Zbl

[12] G. Guseĭnov, “The Determination of the Infinite Jacobi Matrix from Two Spectra”, Mat. Zametki, 23 (1978), 709–720 | MR | Zbl

[13] R. Z. Halilova, “An Inverse Problem”, Izv. Akad. Nauk AzSSR Ser. Fiz.-Tehn. Mat. Nauk, 1967:3–4 (1967), 169–175 (Russian) | MR

[14] H. Hochstadt, “On the Construction of a Jacobi Matrix from Spectral Data”, Linear Alg. Appl., 8 (1974), 435–446 | DOI | MR | Zbl

[15] T. Kato, Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften, 132, Second ed., Springer, Berlin–New York, 1976 | DOI | MR | Zbl

[16] B. Ja. Levin, Distribution of Zeros of Entire Functions, Transl. Math. Mono., 5, Amer. Math. Soc., Providence, RI, 1980 | MR

[17] V. A. Marchenko, Introduction to the Theory of Inverse Problems of Spectral Analysis, Akta, Kharkov, 2005 (Russian)

[18] V. A. Marchenko, T. V. Misyura, “Señalamientos Metodológicos y Didácticos al Tema: Problemas Inversos de la Teoría Espectral de Operadores de Dimensión Finita”, Monografías IIMAS-UNAM, 12, no. 28, 2004

[19] S. Naboko, I. Pchelintseva, L. O. Silva, “Discrete Spectrum in a Critical Coupling Case of Jacobi Matrices with Spectral Phase Transitions by Uniform Asymptotic Analysis”, J. Approx. Theory, 161:1 (2009), 314–336 | DOI | MR | Zbl

[20] Y. M. Ram, “Inverse Eigenvalue Problem for a Modified Vibrating System”, SIAM Appl. Math., 53 (1993), 1763–1775 | DOI | MR

[21] L. O. Silva, J. H. Toloza, “Jacobi Matrices with Rapidly Growing Weights Having Only Discrete Spectrum”, J. Math. Anal. Appl., 328:2 (2007), 1087–1107 | DOI | MR | Zbl

[22] L. O. Silva, R. Weder, “On the Two Spectra Inverse Problem for Semi-Infinite Jacobi Matrices”, Math. Phys. Anal. Geom., 3:9 (2006), 263–290 | MR | Zbl

[23] B. Simon, “The Classical Moment Problem as a Self-adjoint Finite Difference Operator”, Adv. Math., 137:1 (1998), 82–203 | DOI | MR | Zbl

[24] M. Spletzer, A. Raman, H. Sumali, J. P. Sullivan, “Highly Sensitive Mass Detection and Identification Using Vibration Localization in Coupled Microcantilever Arrays”, Appl. Phys. Lett., 92 (2008), 114102 | DOI

[25] M. Spletzer, A. Raman, A. Q. Wu, X. Xu, “Ultrasensitive Mass Sensing Using Mode Localization in Coupled Microcantilevers”, Appl. Phys. Lett., 88 (2006), 254102 | DOI

[26] G. Teschl, “Trace Formulas and Inverse Spectral Theory for Jacobi Operators”, Comm. Math. Phys., 196:1 (1998), 175–202 | DOI | MR | Zbl

[27] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surv. Mono., 72, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[28] E. C. Titchmarsh, The Theory of Functions, Oxford University Press, London, 1952 | Zbl