@article{JMAG_2013_9_2_a1,
author = {M. E. Egwe and U. N. Bassey},
title = {On {Isomorphism} {Between} {Certain} {Group} {Algebras} on the {Heisenberg} {Group}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {150--164},
year = {2013},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a1/}
}
TY - JOUR AU - M. E. Egwe AU - U. N. Bassey TI - On Isomorphism Between Certain Group Algebras on the Heisenberg Group JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2013 SP - 150 EP - 164 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a1/ LA - en ID - JMAG_2013_9_2_a1 ER -
M. E. Egwe; U. N. Bassey. On Isomorphism Between Certain Group Algebras on the Heisenberg Group. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 2, pp. 150-164. http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a1/
[1] B. Krotz, S. Thangavelu, Y. Xu, The Heat Kernel Transform for the Heisenberg Group, 2005, arXiv: math.CA/0401243v2 | MR
[2] A. Sikora, J. Zienkiewicz, “A Note on Heat Kernel on the Heisenberg Group”, Bull. Austral Math. Soc., 65:1 (2002), 116–120 | DOI | MR
[3] M. Cowling, S. Giulini, G. Mauceri, “Weak $(1,1)$ Estimates for Heat Kernel Maximal Functions on Lie Groups”, Trans. Amer. Math. Soc., 323 (1991), 637–649 | MR | Zbl
[4] S. Thangavelu, “Spherical Means on the Heisenberg Group and a Restriction Theorem for the Symplectic Fourier Transform”, Revista Math. Iberoamericana, 7:2 (1991), 135–165 | DOI | MR
[5] J. Ludwig, “Hull-Minimal Ideals in the Schwartz Algebra of the Heisenberg Group”, Stud. Math., 130:1 (1998), 77–98 | MR | Zbl
[6] G. B. Folland, E. M. Stein, “Estimates for the $\bar{\partial}_b$ Complex and Analysis on the Heisenberg Group”, Commun. Pure and Appl. Math., XXVII (1974), 429–522 | DOI | MR | Zbl
[7] G. Mauceri, “Zonal Multipliers On the Heisenberg Group”, Pacific J. Math., 95 (1981), 143–169 | DOI | MR
[8] S. Lang, $SL(2,I\!\!R)$, Addison-Wesley, Reading, MA, 1975 | MR | Zbl
[9] R. Gangolli, “Spherical Functions on Semisimple Lie Groups”, Symmetric Spaces, eds. W. Boothy, G. Weiss, Marcel Dekker, Inc., New York, 1972 | MR
[10] B. Astengo, D. B. Blasio, F. Ricci, “Gelfand Pairs on the Heisenberg Group and Schwartz Functions”, J. Funct. Anal., 256:5 (2009), 1565–1587 | DOI | MR | Zbl
[11] C. Benson, J. Jenkins, G. Ratcliff, “Bounded $K$-Spherical Functions on the Heisenberg Groups”, J. Funct. Anal., 105 (1992), 409–443 | DOI | MR | Zbl
[12] G. E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Math. and its Appl., Cambridge Univ. Press, UK, Cambridge, 2000 | MR | Zbl
[13] S. Helgason, Groups and Geometric Analysis: Integral Geometry, Differential Operators and Spherical Functions, Acad. Press Inc., New York, 1984 | MR | Zbl
[14] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, London, 1971 | MR
[15] G. Szego, Orthogonal Polynomials, AMS Colloq. Publ., XXIII, AMS, Providence, RI, 1939 | Zbl
[16] S. Bochner, K. Chandrasekharan, Fourier Transforms, Princeton Univ. Press, London, 1949 | MR
[17] N. Leptin, “On Group Algebras of Nilpotent Groups”, Stud. Math., 47 (1973), 37–49 | MR | Zbl
[18] A. Hulanicki, F. Ricci, “A Tauberian Theorem and Tangential Convergence of Bounded Harmonic Functions on Balls in ${I\!\!\!\!C}^n$”, Inv. Math., 62 (1980), 325–331 | DOI | MR | Zbl
[19] N. Lyall, “The Heisenberg Group Fourier Transform”, Trans. Amer. Math. Soc., 359 (2007), 4467–4488 | DOI | MR | Zbl
[20] M. E. Taylor, Noncommutative Harmonic Analysis, AMS, Providence, RI, USA, 1986 | MR