@article{JMAG_2013_9_2_a0,
author = {Yu. A. Aminov and Ia. Nasedkina},
title = {Conditions on a {Surface} $F^2\subset E^n$ to lie in $E^4$},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {127--149},
year = {2013},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a0/}
}
Yu. A. Aminov; Ia. Nasedkina. Conditions on a Surface $F^2\subset E^n$ to lie in $E^4$. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 2, pp. 127-149. http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a0/
[1] Yu. A. Aminov, Geometry of Submanifolds, Naukova dumka, Kiev, 2002 | Zbl
[2] R. Curant, Partial Differential Equations, Mir, Moscow, 1964 | MR
[3] B. L. Rozhdestvensky, N. N. Yanenko, Systems of the Quasilinear Equations and their Applications to Gas Dynamics, Nauka, Moscow, 1968
[4] E. M. Landis, “Some Questions about Qualitative Theory of Elliptic and Parabolic Equations”, Russ. Math. Surv., 14:1 (1959), 21–85 | MR
[5] W. Blaschke, Differential Geometry, ONTI, M.–L., 1935
[6] A. N. Tikhonov, A. A. Samarsky, Equations of Mathematical Physics, Nauka, Moscow, 1972 | MR
[7] S. G. Mikhlin, Course of Mathematical Physics, Nauka, Moscow, 1968
[8] A. Fridman, The Partial Defferential Equations of Parabolic Type, Mir, Moscow, 1968
[9] A. Tychonoff, “Theoremes d'unicite pour l'equation de la chaleur”, Mat. Sb., 42:2 (1935), 199–216 | Zbl
[10] I. G. Petrovsky, Lectures on the Theory of Ordinary Differential Equations, Publ. house of the Moscow university, 1984 | MR
[11] I. G. Petrovsky, Lectures on Partial Defferential Equations, Nauka, Moscow, 1961
[12] Yu. V. Egorov, M. A. Shubin, “Linear Partial Differential Equations. Foundations of the Classical Theory”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 30, 1988, 5–255 | MR
[13] P. K. Rashevsky, Riemannian Geometry and Tensor Analysis, Nauka, Moscow, 1967 | MR