Conditions on a Surface $F^2\subset E^n$ to lie in $E^4$
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 2, pp. 127-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a surface $F^2$ in $E^n$ with a non-degenerate ellipse of normal curvature whose plane passes through the corresponding surface point. The definition of three types of points is given in dependence of the position of the point relatively to the ellipse. If in the domain $D\subset F^2$ all the points are of the same type, then the domain $D$ is said also to be of this type. This classification of points and domains is linked with the classification of partial differential equations of the second order. The theorems on the surface to lie in $E^4$ are proved under the fulfilment of certain boundary conditions. Some examples of the surfaces are constructed to show that the boundary conditions of the theorems are essential.
@article{JMAG_2013_9_2_a0,
     author = {Yu. A. Aminov and Ia. Nasedkina},
     title = {Conditions on a {Surface} $F^2\subset E^n$ to lie in $E^4$},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {127--149},
     year = {2013},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
AU  - Ia. Nasedkina
TI  - Conditions on a Surface $F^2\subset E^n$ to lie in $E^4$
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2013
SP  - 127
EP  - 149
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a0/
LA  - en
ID  - JMAG_2013_9_2_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%A Ia. Nasedkina
%T Conditions on a Surface $F^2\subset E^n$ to lie in $E^4$
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2013
%P 127-149
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a0/
%G en
%F JMAG_2013_9_2_a0
Yu. A. Aminov; Ia. Nasedkina. Conditions on a Surface $F^2\subset E^n$ to lie in $E^4$. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 2, pp. 127-149. http://geodesic.mathdoc.fr/item/JMAG_2013_9_2_a0/

[1] Yu. A. Aminov, Geometry of Submanifolds, Naukova dumka, Kiev, 2002 | Zbl

[2] R. Curant, Partial Differential Equations, Mir, Moscow, 1964 | MR

[3] B. L. Rozhdestvensky, N. N. Yanenko, Systems of the Quasilinear Equations and their Applications to Gas Dynamics, Nauka, Moscow, 1968

[4] E. M. Landis, “Some Questions about Qualitative Theory of Elliptic and Parabolic Equations”, Russ. Math. Surv., 14:1 (1959), 21–85 | MR

[5] W. Blaschke, Differential Geometry, ONTI, M.–L., 1935

[6] A. N. Tikhonov, A. A. Samarsky, Equations of Mathematical Physics, Nauka, Moscow, 1972 | MR

[7] S. G. Mikhlin, Course of Mathematical Physics, Nauka, Moscow, 1968

[8] A. Fridman, The Partial Defferential Equations of Parabolic Type, Mir, Moscow, 1968

[9] A. Tychonoff, “Theoremes d'unicite pour l'equation de la chaleur”, Mat. Sb., 42:2 (1935), 199–216 | Zbl

[10] I. G. Petrovsky, Lectures on the Theory of Ordinary Differential Equations, Publ. house of the Moscow university, 1984 | MR

[11] I. G. Petrovsky, Lectures on Partial Defferential Equations, Nauka, Moscow, 1961

[12] Yu. V. Egorov, M. A. Shubin, “Linear Partial Differential Equations. Foundations of the Classical Theory”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 30, 1988, 5–255 | MR

[13] P. K. Rashevsky, Riemannian Geometry and Tensor Analysis, Nauka, Moscow, 1967 | MR