An Application of Kadets–Pełczyński Sets to Narrow Operators
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 1, pp. 102-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A known analogue of the Pitt compactness theorem for function spaces asserts that if $1 \leq p < 2$ and $p < r < \infty$, then every operator $T:L_p \to L_r$ is narrow. Using a technique developed by M. I. Kadets and A. Pełczyński, we prove a similar result. More precisely, if $1 \leq p \leq 2$ and $F$ is a Köthe–Banach space on $[0,1]$ with an absolutely continuous norm containing no isomorph of $L_p$ such that $F \subset L_p$, then every regular operator $T: L_p \to F$ is narrow.
@article{JMAG_2013_9_1_a6,
     author = {I. V. Krasikova and M. M. Popov},
     title = {An {Application} of {Kadets{\textendash}Pe{\l}czy\'nski} {Sets} to {Narrow} {Operators}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {102--107},
     year = {2013},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_1_a6/}
}
TY  - JOUR
AU  - I. V. Krasikova
AU  - M. M. Popov
TI  - An Application of Kadets–Pełczyński Sets to Narrow Operators
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2013
SP  - 102
EP  - 107
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2013_9_1_a6/
LA  - en
ID  - JMAG_2013_9_1_a6
ER  - 
%0 Journal Article
%A I. V. Krasikova
%A M. M. Popov
%T An Application of Kadets–Pełczyński Sets to Narrow Operators
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2013
%P 102-107
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2013_9_1_a6/
%G en
%F JMAG_2013_9_1_a6
I. V. Krasikova; M. M. Popov. An Application of Kadets–Pełczyński Sets to Narrow Operators. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 1, pp. 102-107. http://geodesic.mathdoc.fr/item/JMAG_2013_9_1_a6/

[1] J. Bourgain, “New Classes of ${\mathcal L}_p$-spaces”, Lect. Notes Math., 889 (1981), 1–143 | MR

[2] D. Dosev, W. B. Johnson, G. Schechtman, “Commutators on $L_p$, $1\le p\infty$”, J. Amer. Math. Soc., 26:1 (2013), 101–127 | DOI | MR | Zbl

[3] P. Enflo, T. Starbird, “Subspaces of $L^1$ Containing $L^1$”, Studia Math., 65:2 (1979), 203–225 | MR | Zbl

[4] J. Flores, F. L. Hernández, P. Tradacete, “Domination Problems for Strictly Singular Operators and Other Related Classes”, Positivity, 15:4 (2011), 595–616 | DOI | MR | Zbl

[5] J. Flores, C. Ruiz, “Domination by Positive Narrow Operators”, Positivity, 7:4 (2003), 303–321 | DOI | MR | Zbl

[6] W. B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, “Symmetric Structures in Banach Spaces”, Mem. Amer. Math. Soc., 19, no. 217, 1979 | MR

[7] M. I. Kadets, A. Pełczyński, “Bases, Lacunary Sequences and Complemented Subspaces in the Spaces $L_p$”, Studia Math., 21:2 (1962), 161–176 | MR | Zbl

[8] M. I. Kadets, M. M. Popov, “On the Lyapunov Convexity Theorem with Applications to Sign-Embeddings”, Ukr. Mat. Zh., 44:9 (1992), 1192–1200 | DOI | MR

[9] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, v. 1, Sequence Spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR

[10] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, v. 2, Function Spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1979 | MR

[11] A. M. Plichko, M. M. Popov, “Symmetric Function Spaces on Atomless Probability Spaces”, Dissertationes Math. (Rozprawy Mat.), 306 (1990), 1–85 | MR

[12] M. M. Popov, “Narrow Operators (a survey)”, Banach Center Publ., 92, 2011, 299–326 | DOI | MR | Zbl

[13] M. M. Popov, B. Randrianantoanina, Narrow Operators on Function Spaces and Vector Lattices, De Gruyter Studies in Mathematics, 45, De Gruyter, 2012

[14] H. P. Rosenthal, “Embeddings of $L^1$ in $L^1$”, Contemp. Math., 26, 1984, 335–349 | DOI | MR | Zbl