Complexity of Initial Value Problems in Banach Spaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 1, pp. 73-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the complexity of initial value problems for Banach space valued ordinary differential equations in the randomized setting. The right-hand side is assumed to be $r$-smooth, the $r$-th derivatives being $\rho$-Hölder continuous. We develop and analyze a randomized algorithm. Furthermore, we prove lower bounds and thus obtain complexity estimates. They are related to the type of the underlying Banach space. We also consider the deterministic setting. The results extend previous ones for the finite dimensional case from [2, 9, 10].
@article{JMAG_2013_9_1_a5,
     author = {S. Heinrich},
     title = {Complexity of {Initial} {Value} {Problems} in {Banach} {Spaces}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {73--101},
     year = {2013},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_1_a5/}
}
TY  - JOUR
AU  - S. Heinrich
TI  - Complexity of Initial Value Problems in Banach Spaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2013
SP  - 73
EP  - 101
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2013_9_1_a5/
LA  - en
ID  - JMAG_2013_9_1_a5
ER  - 
%0 Journal Article
%A S. Heinrich
%T Complexity of Initial Value Problems in Banach Spaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2013
%P 73-101
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2013_9_1_a5/
%G en
%F JMAG_2013_9_1_a5
S. Heinrich. Complexity of Initial Value Problems in Banach Spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 1, pp. 73-101. http://geodesic.mathdoc.fr/item/JMAG_2013_9_1_a5/

[1] H. Cartan, Cours de calcul différentiel, Hermann, Paris, 1977 | MR | Zbl

[2] Th. Daun, “On the Randomized Solution of Initial Value Problems”, J. Complexity, 27 (2011), 300–311 | DOI | MR | Zbl

[3] Th. Daun, S. Heinrich, “Complexity of Banach Space Valued and Parametric Integration” (Paper submitted to the Proceedings of MCQMC 2012)

[4] Th. Daun, S. Heinrich, Complexity of Parametric Initial Value Problems, Paper in preparation

[5] J. L. Doob, Stochastic Processes, Wiley, New York, 1953 | MR | Zbl

[6] G. Godefroy, “Renorming of Banach Spaces”, Handbook of the Geometry of Banach Spaces, v. 1, eds. W. B. Johnson, J. Lindenstrauss, Elsevier, Amsterdam, 2001, 781–835 | DOI | MR | Zbl

[7] S. Heinrich, “Monte Carlo Approximation of Weakly Singular Integral Operators”, J. Complexity, 22 (2006), 192–219 | DOI | MR | Zbl

[8] S. Heinrich, “The Randomized Information Complexity of Elliptic PDE”, J. Complexity, 22 (2006), 220–249 | DOI | MR | Zbl

[9] S. Heinrich, B. Milla, “The Randomized Complexity of Initial Value Problems”, J. Complexity, 24 (2008), 77–88 | DOI | MR | Zbl

[10] B. Kacewicz, “How to Increase the Order to Get Minimal-Error Algorithms for Systems of ODE”, Numer. Math., 45 (1984), 93–104 | DOI | MR | Zbl

[11] B. Kacewicz, “Randomized and Quantum Algorithms Yield a Speed-up for Initial-Value Problems”, J. Complexity, 20 (2004), 821–834 | DOI | MR | Zbl

[12] B. Kacewicz, “Almost Optimal Solution of Initial-Value Problems by Randomized and Quantum Algorithms”, J. Complexity, 22 (2006), 676–690 | DOI | MR | Zbl

[13] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer, 1991 | MR | Zbl

[14] B. Maurey, G. Pisier, “Series de variables aléatoires vectorielles independantes et propriétés geométriques des espaces de Banach”, Stud. Math., 58 (1976), 45–90 | MR | Zbl

[15] E. Novak, Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Mathematics, 1349, Springer, 1988 | MR | Zbl

[16] G. Stengle, “Numerical Methods for Systems with Measurable Coefficients”, Appl. Math. Lett., 3 (1990), 25–29 | DOI | MR | Zbl

[17] G. Stengle, “Error Analysis of a Randomized Numerical Method”, Numer. Math., 70 (1995), 119–128 | DOI | MR | Zbl

[18] J. F. Traub, G. W. Wasilkowski, H. Woźniakowski, Information-Based Complexity, Academic Press, New York, 1988 | MR | Zbl