Rate of Decay of the Bernstein Numbers
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 1, pp. 59-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that if a Banach space $X$ contains uniformly complemented $\ell_2^n$'s then there exists a universal constant $b=b(X)>0$ such that for each Banach space $Y$, and any sequence $d_n\downarrow 0$ there is a bounded linear operator $T:X\to Y$ with the Bernstein numbers $b_n(T)$ of $T$ satisfying $b^{-1}d_n\le b_n(T)\le bd_n$ for all $n$.
@article{JMAG_2013_9_1_a4,
     author = {A. Plichko},
     title = {Rate of {Decay} of the {Bernstein} {Numbers}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {59--72},
     year = {2013},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2013_9_1_a4/}
}
TY  - JOUR
AU  - A. Plichko
TI  - Rate of Decay of the Bernstein Numbers
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2013
SP  - 59
EP  - 72
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2013_9_1_a4/
LA  - en
ID  - JMAG_2013_9_1_a4
ER  - 
%0 Journal Article
%A A. Plichko
%T Rate of Decay of the Bernstein Numbers
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2013
%P 59-72
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2013_9_1_a4/
%G en
%F JMAG_2013_9_1_a4
A. Plichko. Rate of Decay of the Bernstein Numbers. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2013) no. 1, pp. 59-72. http://geodesic.mathdoc.fr/item/JMAG_2013_9_1_a4/

[1] A. G. Aksoy, G. Lewicki, “Diagonal Operators, $s$-Numbers and Bernstein Pairs”, Note Mat., 17 (1999), 209–216 | MR

[2] S. Bernstein, “Sur l'ordre de la Meilleure Approximation des Fonctions Continues par des Polynômes de Degré Donné”, Mém. Acad. Roy. Belgique, 4 (1912), 1–104

[3] S. Bernstein, Leçons sur les Propriétés Extrémales et la Meilleure Approximation des Fonctions Analytiques d'une Variable Réelle, v. X, Gauthier–Villars, Paris, 1926, 207 pp., Collection de monographies sur la théorie des fonctions, publ. par E. Borel | Zbl

[4] S. N. Bernstein, “Sur le Problème Inverse de la Théorie de la Meilleure Approximation des Fonctions Continues”, Comp. Rend. Paris, 206 (1938), 1520–1523

[5] W. J. Davis, W. B. Johnson, “Compact, Non-Nuclear Operators”, Studia Math., 51 (1974), 81–85 | MR | Zbl

[6] J. Flores, F. L. Hernández, Y. Raynaud, “Super Strictly Singular and Cosingular Operators and Related Classes”, J. Operator Theory, 67 (2012), 121–152 | MR | Zbl

[7] A. Hinrichs, A. Pietsch, Closed Ideals and Dvoretzky's Theorem for Operators, unpublished

[8] C. V. Hutton, J. S. Morrell, J. R. Retherford, “Approximation Numbers and Kolmogoroff Diameters of Bounded Linear Operators”, Bull. Amer. Math. Soc., 80 (1974), 462–466 | DOI | MR | Zbl

[9] C. V. Hutton, J. S. Morrell, J. R. Retherford, “Diagonal Operators, Approximation Numbers and Kolmogoroff Diameters”, J. Approx. Theory, 16 (1976), 48–80 | DOI | MR | Zbl

[10] M. I. Kadets, M. G. Snobar, “Certain Functionals on the Minkowski Compactum”, Math. Notes, 10 (1971), 694–696 | DOI | MR

[11] M. G. Krein, M. A. Krasnoselskiĭ, D. P. Milman, “On the Defect Numbers of Linear Operators in Banach Space and on Some Geometric Problems”, Sb. Trud. Inst. Mat. Akad. Nauk USSR, 11 (1948), 97–112 (Russian)

[12] J. Lindenstrauss, A. Pełczyński, “Absolutely Summing Operators on $\mathcal{L}_{p}$-Spaces and their Applications”, Studia Math., 29 (1968), 275–328 | MR

[13] A. A. Markov, “On a Question of D. I. Mendeleev”, Zapiski Imperatorskoĭ Akademii Nauk, 62 (1889), 1–24 (Russian)

[14] V. Mascioni, “A Restriction-Extension Property for Operators on Banach Spaces”, Rocky Mountain J. Math., 24 (1994), 1497–1507 | DOI | MR | Zbl

[15] V. D. Milman, “Operators of the Class $C_0$ and $C_0^*$”, Teor. Funktsii, Funkts. Anal. i Prilozen., 10 (1970), 15–26 (Russian) | MR | Zbl

[16] B. S. Mitiagin, G. M. Henkin, “Inequalities Between Various $n$-Widths”, Trudy Sem. Funkts. Anal. (Voronezh), 7 (1963), 97–103 (Russian)

[17] B. S. Mitiagin, A. Pełczyński, “Nuclear Operators and Approximative Dimension”, Proceedings of International Congress of Mathematicians (Moscow, 1966), 366–372 | MR

[18] T. Oikhberg, “Rate of Decay of $s$-Numbers”, J. Approx. Theory, 163 (2011), 311–327 | DOI | MR | Zbl

[19] A. Pietsch, “$s$-Numbers of Operators in Banach Spaces”, Studia Math., 51 (1974), 201–223 | MR | Zbl

[20] A. Pietsch, Eigenvalues and $s$-Numbers, Greest and Portig, Leipzig; Cambridge University Press, Cambridge, 1987 | MR

[21] A. Pietsch, “Bad Properties of the Bernstein Numbers”, Studia Math., 184 (2008), 263–269 | DOI | MR | Zbl

[22] G. Pisier, “Probability Methods in the Geometry of Banach Spaces”, Lect. Notes Math., 1206, 1986, 167–241 | DOI | MR | Zbl

[23] G. Pisier, “Counterexamples to a Conjecture of Grothendieck”, Acta Math., 151 (1983), 181–208 | DOI | MR | Zbl

[24] A. Plichko, “Superstrictly Singular and Superstrictly Cosingular Operators”, Functional Analysis and its Applications, Proc. of the Stefan Banach Conf., North-Holland Math. Stud., 197, eds. V. Kadets, W. Zelazko, Elsevier Sci. Publ., 2004, 239–256 | DOI | MR

[25] V. G. Samarskiĭ, “The Construction of an Operator Ideal by Means of Bernšteĭn $s$-Numbers”, Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 1978, no. 1, 77–80 (Russian) | MR | Zbl

[26] R. J. Whitley, “Markov and Bernstein's Inequalities and Compact and Strictly Singular Operators”, J. Approx. Theory, 34 (1982), 277–285 | DOI | MR | Zbl