@article{JMAG_2012_8_3_a4,
author = {L. Kobyakova},
title = {Spectral problem generated by the equation of smooth string with piece-wise constant friction},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {280--295},
year = {2012},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a4/}
}
TY - JOUR AU - L. Kobyakova TI - Spectral problem generated by the equation of smooth string with piece-wise constant friction JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2012 SP - 280 EP - 295 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a4/ LA - ru ID - JMAG_2012_8_3_a4 ER -
L. Kobyakova. Spectral problem generated by the equation of smooth string with piece-wise constant friction. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 3, pp. 280-295. http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a4/
[1] F.V. Atkinson, Discreet and Continuous Boundary Problems, Mir, Moscow, 1968 (Russian) | MR | Zbl
[2] I.S. Kats and M.G. Krein, “On the Spectral Functions of the String”, Appendix II: F.V. Atkinson, Discreet and Continuous Boundary Problems, Mir, Moscow, 1968 (Russian)
[3] R. Courant and D. Gilbert, Methods of Mathematical Physics, v. I, Interscience Publishers, Inc., New York, 1953
[4] Y.M. Berezansky, Expansions in Eigenfunctions of Selfadjoint Operators, Naukova dumka, Kiev, 1965 (Russian) | MR
[5] A.G. Kostuchenko and I.S. Sargsyan, Distribution of Eigenvalues (Selfadjoint Simple Differential Operator), Nauka, Moscow, 1979 (Russian) | MR
[6] J. Pöschl and E. Trubowitz, Inverse Scattering Theory, Academic Press, New York, 1987
[7] D.Z. Arov, “Realization of a Canonical System with a Dissipative Boundary Condition at One End of the Segment in Terms of the Coefficient of Dynamical Compliance”, Sib. Mat. Zh., 16:3 (1975), 440–463 (Russian) | MR | Zbl
[8] M.G. Krein and A.A. Nudelman, “On Direct and Inverse Problems for Boundary Dissipation Frequencies of a Nonuniform String”, Dokl. AN SSSR, 247:5 (1979), 1046–1049 (Russian) | MR
[9] M.G. Krein and A.A. Nudelman, “On Some Spectral Properties of a Non-Homogeneous String with a Dissipative Boundary Condition”, J. Oper. Theory, 22 (1989), 369–395 (Russian) | MR | Zbl
[10] V.N. Pivovarchik, “Inverse Problem for a Smooth String with Damping at One End”, J. Oper. Theory, 38 (1998), 243–263 | MR
[11] V.N. Pivovarchik, “Direct and Inverse Problems for a Damped String”, J. Oper. Theory, 42 (1999), 189–220 | MR | Zbl
[12] M. Jaulent, “Inverse Scattering Problems in Absorbing Media”, J. Math. Phys., 17 (1976), 1351–1360 | DOI | MR
[13] C. Jean and M. Jaulent, “The Inverse Problem for the One-Dimensional Schrödinger Equation with an Energy-Dependent polential”, Ann. Inst. Henri Poincaré, 25:2 (1976), 119–137 | MR | Zbl
[14] M.G. Gasymov and G.Sh. Guseynov, “Determination of a Diffusion Operator from Spectral Data”, Dokl. AN AzSSR, 37:2 (1981), 19–23 (Russian) | MR | Zbl
[15] Chuan-Fu Yang, “New Trace Formulae for a Quadratic Pencil of the Schrödinger Operator”, J. Math. Phys., 51 (2010), 033506 | DOI | MR
[16] S. Cox and E. Zuazua, “The Rate at which Energy Decays in a String Damped at the End”, Indiana Univ. Math. J., 44 (1995), 545–573 | DOI | MR | Zbl
[17] V.N. Pivovarchik, “On Spectra of a Certain Class of Quadratic Operator Pencils with One-Dimencional Linear Part”, Ukr. Mat. Zh., 59:5 (2007), 702–716 | DOI | MR | Zbl
[18] B.Ya. Levin, Distribution of Zeros of Entire Functions, Transl. Math. Mono, 5, AMS, Providence, RI, 1980 | MR