Good measures on locally compact Cantor sets
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 3, pp. 260-279 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the set $M(X)$ of full non-atomic Borel measures $\mu$ on a non-compact locally compact Cantor set $X$. The set $\mathfrak{M}_\mu = \{x \in X\colon \text{for any compact open set}\ U \ni x \text{ we have}\ \mu(U) = \infty \}$ is called defective. $\mu$ is non-defective if $\mu(\mathfrak{M}_\mu) = 0$. The set $M^0(X) \subset M(X)$ consists of probability and infinite non-defective measures. We classify the measures from $M^0(X)$ with respect to a homeomorphism. The notions of goodness and the compact open values set $S(\mu)$ are defined. A criterion when two good measures are homeomorphic is given. For a group-like set $D$ and a locally compact zero-dimensional metric space $A$ we find a good non-defective measure $\mu$ on $X$ such that $S(\mu) = D$ and $\mathfrak{M}_\mu$ is homeomorphic to $A$. We give a criterion when a good measure on $X$ can be extended to a good measure on the compactification of $X$.
@article{JMAG_2012_8_3_a3,
     author = {O. M. Karpel},
     title = {Good measures on locally compact {Cantor} sets},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {260--279},
     year = {2012},
     volume = {8},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a3/}
}
TY  - JOUR
AU  - O. M. Karpel
TI  - Good measures on locally compact Cantor sets
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2012
SP  - 260
EP  - 279
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a3/
LA  - ru
ID  - JMAG_2012_8_3_a3
ER  - 
%0 Journal Article
%A O. M. Karpel
%T Good measures on locally compact Cantor sets
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2012
%P 260-279
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a3/
%G ru
%F JMAG_2012_8_3_a3
O. M. Karpel. Good measures on locally compact Cantor sets. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 3, pp. 260-279. http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a3/

[1] J.C. Oxtoby and S.M. Ulam, “Measure Preserving Homeomorphisms and Metrical Transitivity”, Ann. Math., 42 (1941), 874–920 | DOI | MR | Zbl

[2] S. Alpern and V.S. Prasad, “Typical Dynamics of Volume Preserving Homeomorphisms.”, Cambridge Tracts in Mathematics, 139, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[3] J.C. Oxtoby and V.S. Prasad, “Homeomorphic Measures in the Hilbert Cube”, Pacific J. Math., 77 (1978), 483–497 | DOI | MR | Zbl

[4] E. Akin, R. Dougherty, R.D. Mauldin, and A. Yingst, “Which Bernoulli Measures Are Good Measures?”, Colloq. Math., 110 (2008), 243–291 | DOI | MR | Zbl

[5] T.D. Austin, “A Pair of Non-Homeomorphic Product Measures on the Cantor Set”, Math. Proc. Cam. Phil. Soc., 142 (2007), 103–110 | DOI | MR | Zbl

[6] S. Bezuglyi and O. Karpel, “Homeomorphic Measures on Stationary Bratteli Diagrams”, J. Funct. Anal., 261 (2011), 3519–3548 | DOI | MR | Zbl

[7] R. Dougherty, R. Daniel Mauldin, and A. Yingst, “On Homeomorphic Bernoulli Measures on the Cantor Space”, Trans. Amer. Math. Soc., 359 (2007), 6155–6166 | DOI | MR | Zbl

[8] Andrew Q. Yingst, “A Characterization of Homeomorphic Bernoulli Trial Measures”, Trans. Amer. Math. Soc., 360 (2008), 1103–1131 | DOI | MR | Zbl

[9] O. Karpel, “Infinite Measures on Cantor Spaces”, J. Diff. Eq. Appl. | DOI

[10] E. Akin, “Measures on Cantor Space”, Topology Proc., 24 (1999), 1–34 | MR

[11] E. Akin, “Good Measures on Cantor Space”, Trans. Amer. Math. Soc., 357 (2005), 2681–2722 | DOI | MR | Zbl

[12] E. Glasner and B. Weiss, “Weak Orbital Equivalence of Minimal Cantor Systems”, Int. J. Math., 6 (1995), 559–579 | DOI | MR | Zbl

[13] A. Danilenko, “Strong Orbit Equivalence of Locally Compact Cantor Minimal Systems”, Int. J. Math., 12 (2001), 113–123 | DOI | MR | Zbl

[14] R. Engelking, General Topology, Heldermann, Berlin, 1989 | MR | Zbl

[15] S. Bezuglyi, J. Kwiatkowski, K. Medynets, and B. Solomyak, “Invariant Measures on Stationary Bratteli Diagrams”, Ergodic Theory Dynam. Syst., 30 (2010), 973–1007 | DOI | MR | Zbl

[16] A. Danilenko, “$(C,F)$-Actions in Ergodic Theory. Geometry and Dynamics of Groups and Spaces”, Progr. Math., 265 (2008), 325–351 | DOI | MR | Zbl