On the universal models of commutative systems of linear operators
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 3, pp. 248-259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The universal models are constructed for a system of linear bounded non-selfadjoint operators $\{A_1,A_2\}$ acting in a Hilbert space $H$ such that 1) $[A_1,A_2]=0$, $[A_1^*,A_2]=0$; 2) $\displaystyle{\frac{A_k-A_k^*}i\geq0}$ ($k=1, 2$); 3) the function $A(\lambda)=A_1(\lambda_1)A_2(\lambda_2)$ ($A_k(\lambda_k)=A_k(I-\lambda_kA_k)^{-1}$, $k=1, 2$) is an entire function of the exponential type. It is proved that this class of linear operator systems is realized by the restriction on invariant subspaces of systems of operator of integration by independent variables in $L^2(\Omega)\otimes l^2$ where $\Omega$ is a rectangle in $\mathbb{R}^2$.
@article{JMAG_2012_8_3_a2,
     author = {R. Hatamleh and V. A. Zolotarev},
     title = {On the universal models of commutative systems of linear operators},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {248--259},
     year = {2012},
     volume = {8},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a2/}
}
TY  - JOUR
AU  - R. Hatamleh
AU  - V. A. Zolotarev
TI  - On the universal models of commutative systems of linear operators
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2012
SP  - 248
EP  - 259
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a2/
LA  - ru
ID  - JMAG_2012_8_3_a2
ER  - 
%0 Journal Article
%A R. Hatamleh
%A V. A. Zolotarev
%T On the universal models of commutative systems of linear operators
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2012
%P 248-259
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a2/
%G ru
%F JMAG_2012_8_3_a2
R. Hatamleh; V. A. Zolotarev. On the universal models of commutative systems of linear operators. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 3, pp. 248-259. http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a2/

[1] M.S. Livšic and A.A. Yantsevich, Theory of Operator Colligations in Hilbert Spaces, Kharkov State University Publ., Kharkov, 1971 (Russian) | MR | Zbl

[2] M.S. Brodskii, Triangular and Jordan Representations of Linear Operators, Nauka, Moscow, 1969 (Russian) | MR

[3] V.A. Zolotarev, Analitic Methods of Spectral Representations of Non-Selfadjoint and Nonunitary Operators, MagPress, Kharkov, 2003 (Russian)

[4] G.E. Kisilevskii, “On Reduction of Some Class of Infinite-Dimensional Operators to the Normal Jordan Form”, Pervaya respubl. matem. conf. molodyh issledovatelej, I, Kyiv, 1965, 332–341 | MR

[5] M.S. Brodskii and G.E. Kisilevskii, “Unicellular Quality Criterion for Dissipative Volterra Operators with Trace Class Imaginary Components”, Izv. AN SSSR. Ser. Matem., 30:6 (1966), 1213–1228 (Russian) | MR

[6] L.L. Vaksman, “On Universal Models of Linear Representations of Topological Groups”, Teor. Funkts., Funkts. Analiz i Prilozh., 1977, no. 27, 45–47 (Russian) | MR | Zbl

[7] L.Ye. Isayev, “On One Class of Operators with the Spectrum at Zero”, DAN SSSR, 178:4 (1968), 783–785 (Russian) | MR

[8] N.I. Akhiyezer, Lectures on Integral Transforms, Kharkov State University Publ., Kharkov, 1984 (Russian)

[9] V.A. Zolotarev, “Universal Models of Operators with Specified Restrictions on Resolvent growth”, Teor. Funkts., Funkts. Analiz i Prilozh., 1986, no. 45, 40–45 (Russian) | Zbl

[10] L.I. Ronkin, Elements of Theory of Analytic Functions of Many Variables, Naukova dumka, Kyiv, 1977 (Russian) | MR | Zbl