@article{JMAG_2012_8_3_a1,
author = {V. A. Gorkavyy},
title = {An {Example} of {Bianchi} {Transformation} in $E^4$},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {240--247},
year = {2012},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a1/}
}
V. A. Gorkavyy. An Example of Bianchi Transformation in $E^4$. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 3, pp. 240-247. http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a1/
[1] Yu.A. Aminov, Geometry of Submanifolds, Gordon Breach Science Publ., Amsterdam, 2001 | MR | Zbl
[2] K. Tenenblat, Transformations of Manifolds and Applications to Differential Equations, Wiley, New York, 1998 | MR
[3] Nonlinearity Geometry. Luigi Bianchi Days, eds. D. Wojcik and J. Cieslinski, Polish Scientific Publishers PWN, Warsawa, 1998 | MR
[4] Yu. Aminov, “A Bianchi Transformation for a Domain of the Many-Dimensional Lobachevski Space”, Ukr. Geom. Sb., 21 (1978), 3–5 (Russian) | MR | Zbl
[5] L.A. Masaltsev, “Pseudo-Spherical Congruence in $E^{2n-1}$”, Mat. fiz., analiz, geom., 1:3/4 (1994), 505–512 (Russian) | MR | Zbl
[6] Yu. Aminov and A. Sym, “On Bianchi and Backlund Transformations of Two-Dimensional Surfaces in $E^4$”, Math. Phys., Anal. Geom., 3:1 (2000), 75–89 | DOI | MR | Zbl
[7] V.A. Gorkavyy, “Bianchi Congruences for Surfaces in $E^4$”, Mat. Sb., 196:10 (2005), 79–102 (Russian) | DOI | MR
[8] V.A. Gorkavyy and O.M. Nevmerzhitska, “An Analogue of the Bianchi Transformation for Two-Dimensional Surfaces in $S^3\times R^1$ and $H^3\times R^1$”, Proceedings of the International conference “Geometry in ‘`large”, topology and applications’', dedicated to A.V. Pogorelov, “Acta”, Kharkiv, 2010, 186–195