@article{JMAG_2012_8_3_a0,
author = {N. S. Claire},
title = {Spectral mapping theorem for the {Davies{\textendash}Helffer{\textendash}Sj\"ostrand} functional calculus},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {221--239},
year = {2012},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a0/}
}
N. S. Claire. Spectral mapping theorem for the Davies–Helffer–Sjöstrand functional calculus. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 3, pp. 221-239. http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a0/
[1] B. Helffer and J. Sjöstrand, “Équation de Schrödinger avec champ magnétique et équation de Harper”, Schrödinger Operators (§ønderborg, 1988), Lecture Notes in Phys., 345, eds. H. Holden and A. Jensen, Springer-Verlag, Berlin, 1989, 118–197 | DOI | MR
[2] E.B. Davies, “The Functional Calculus”, J. London Math. Soc., 52:1 (1995), 166–176 | DOI | MR | Zbl
[3] E.M. Dyn'kin, “An Operator Calculus Based upon the Cauchy–Green Formula, and the Quasi-Analyticity of the Classes $D(h)$”, Sem. Math. V.A. Steklov Math. Inst., 19, Leningrad, 1972, 128–131 | MR
[4] A. Bátkai and E. Fašanga, “The Spectral Mapping Theorem for Davies' Functional Calculus”, Rev. Roumaine Math. Pures Appl., 48:4 (2003), 365–372 | MR | Zbl
[5] E.B. Davies, Linear Operators and their Spectra, Cambridge Studies in Advanced Mathematics, 106, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl
[6] E.B. Davies, Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics, 42, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[7] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. 1, Springer, New York, 1993
[8] S.T. Seeley, “Extensions of $C^\infty$ functions defined on a half space”, Proc. Amer. Math. Soc., 15 (1964), 625–626 | MR | Zbl