Spectral mapping theorem for the Davies–Helffer–Sjöstrand functional calculus
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 3, pp. 221-239 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a direct non-abstract proof of the spectral mapping theorem for the Davies–Helffer–Sjöstrand functional calculus for linear operators on Banach spaces with real spectra and consequently give a new non-abstract direct proof for the spectral mapping theorem for self-adjoint operators on Hilbert spaces. Our exposition is closer in spirit to the proof by explicit construction of the existence of the Functional Calculus given by Davies. We apply an extension theorem of Seeley to derive a functional calculus for semi-bounded operators.
@article{JMAG_2012_8_3_a0,
     author = {N. S. Claire},
     title = {Spectral mapping theorem for the {Davies{\textendash}Helffer{\textendash}Sj\"ostrand} functional calculus},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {221--239},
     year = {2012},
     volume = {8},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a0/}
}
TY  - JOUR
AU  - N. S. Claire
TI  - Spectral mapping theorem for the Davies–Helffer–Sjöstrand functional calculus
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2012
SP  - 221
EP  - 239
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a0/
LA  - ru
ID  - JMAG_2012_8_3_a0
ER  - 
%0 Journal Article
%A N. S. Claire
%T Spectral mapping theorem for the Davies–Helffer–Sjöstrand functional calculus
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2012
%P 221-239
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a0/
%G ru
%F JMAG_2012_8_3_a0
N. S. Claire. Spectral mapping theorem for the Davies–Helffer–Sjöstrand functional calculus. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 3, pp. 221-239. http://geodesic.mathdoc.fr/item/JMAG_2012_8_3_a0/

[1] B. Helffer and J. Sjöstrand, “Équation de Schrödinger avec champ magnétique et équation de Harper”, Schrödinger Operators (§ønderborg, 1988), Lecture Notes in Phys., 345, eds. H. Holden and A. Jensen, Springer-Verlag, Berlin, 1989, 118–197 | DOI | MR

[2] E.B. Davies, “The Functional Calculus”, J. London Math. Soc., 52:1 (1995), 166–176 | DOI | MR | Zbl

[3] E.M. Dyn'kin, “An Operator Calculus Based upon the Cauchy–Green Formula, and the Quasi-Analyticity of the Classes $D(h)$”, Sem. Math. V.A. Steklov Math. Inst., 19, Leningrad, 1972, 128–131 | MR

[4] A. Bátkai and E. Fašanga, “The Spectral Mapping Theorem for Davies' Functional Calculus”, Rev. Roumaine Math. Pures Appl., 48:4 (2003), 365–372 | MR | Zbl

[5] E.B. Davies, Linear Operators and their Spectra, Cambridge Studies in Advanced Mathematics, 106, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl

[6] E.B. Davies, Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics, 42, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[7] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. 1, Springer, New York, 1993

[8] S.T. Seeley, “Extensions of $C^\infty$ functions defined on a half space”, Proc. Amer. Math. Soc., 15 (1964), 625–626 | MR | Zbl