A symmetric model of viscous relaxing fluid. An evolution problem
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 2, pp. 190-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An evolution problem on small motions of the viscous rotating relaxing fluid in a bounded domain is studied. The problem is reduced to the Cauchy problem for the first-order integro-differential equation in a Hilbert space. Using this equation, we prove a strong unique solvability theorem for the corresponding initial-boundary value problem.
@article{JMAG_2012_8_2_a5,
     author = {D. Zakora},
     title = {A symmetric model of viscous relaxing fluid. {An} evolution problem},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {190--206},
     year = {2012},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a5/}
}
TY  - JOUR
AU  - D. Zakora
TI  - A symmetric model of viscous relaxing fluid. An evolution problem
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2012
SP  - 190
EP  - 206
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a5/
LA  - en
ID  - JMAG_2012_8_2_a5
ER  - 
%0 Journal Article
%A D. Zakora
%T A symmetric model of viscous relaxing fluid. An evolution problem
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2012
%P 190-206
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a5/
%G en
%F JMAG_2012_8_2_a5
D. Zakora. A symmetric model of viscous relaxing fluid. An evolution problem. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 2, pp. 190-206. http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a5/

[1] P. K. Pal and V. N. Maslennikova, “Spectral Properties of Operators in a Problem on Normal Oscillations of a Compressible Fluid Filing Rotating Vessel”, Acad. Sci. USSR, 281, no. 3, 1985, 529–534 | MR | Zbl

[2] N. D. Kopachevsky and S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics, v. 2, Nonself-adjoint Problems for Viscous Fluids, Birkhäuser Verlag, Basel–Boston–Berlin, 2003 | MR | Zbl

[3] L. D. Bolgova (Orlova) and N. D. Kopachevsky, “Boundary Value Problems on Small Oscillations of an Ideal Relaxing Fluid and its Generalizations”, Spectral and Evolution Problems, 1994, no. 3, Abstracts of Lectures and Reports on the III Crimean Autumn Math. School-Sympos 3, 41–42

[4] D. A. Zakora, “The Problem on Small Motions of an Ideal Relaxing Fluid”, Dinam. Sist., 20 (2006), 104–112 | Zbl

[5] D. A. Zakora, “Small Motions of an Ideal Relaxing Rotating Fluid”, Dinam. Sist., 26 (2009), 31–42 | Zbl

[6] D. A. Zakora, “A Symmetric Model of Ideal Rotating Relaxing Fluid”, Ukr. Math. Bull., 7:2 (2010), 251–281 | MR

[7] A. A. Il'yshin and B. E. Pobedrya, Foundations of Mathematical Theory of Thermoviscoelasticity, Nauka, Moscow, 1970 (Russian)

[8] N. D. Kopachevsky, S. G. Krein, and Ngo Zui Kan, Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems, Nauka, Moscow, 1989 (Russian)

[9] O. A. Oleinik, G. A. Iosif'yan, and A. S. Shamaev, Mathematical Problems of Nonuniform Medi., Moscow State Univ., Moscow, 1970 (Russian)

[10] V. A. Solonnikov, “On General Boundary-Value Problems for Systems Which are Elliptic in the Sense of A. Douglis–L. Nirenberg.”, Part II, Trudy Math. V.A. Steklov Ins., 1966, 233–297 | MR | Zbl

[11] Yu. M. Berezansky, Expansions on Eigenfunctions of Self-Adjoint Operators, Naukova Dumka, Kiev, 1965 (Russian)

[12] S. G. Krein, Linear Differential Equations in Banach Space, Nauka, Moscow, 1967 (Russian) | MR

[13] J. Goldstein, Semigroups of Linear Operators and Applications, Vyscha Shkola, Kiev, 1965 | MR