@article{JMAG_2012_8_2_a5,
author = {D. Zakora},
title = {A symmetric model of viscous relaxing fluid. {An} evolution problem},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {190--206},
year = {2012},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a5/}
}
D. Zakora. A symmetric model of viscous relaxing fluid. An evolution problem. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 2, pp. 190-206. http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a5/
[1] P. K. Pal and V. N. Maslennikova, “Spectral Properties of Operators in a Problem on Normal Oscillations of a Compressible Fluid Filing Rotating Vessel”, Acad. Sci. USSR, 281, no. 3, 1985, 529–534 | MR | Zbl
[2] N. D. Kopachevsky and S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics, v. 2, Nonself-adjoint Problems for Viscous Fluids, Birkhäuser Verlag, Basel–Boston–Berlin, 2003 | MR | Zbl
[3] L. D. Bolgova (Orlova) and N. D. Kopachevsky, “Boundary Value Problems on Small Oscillations of an Ideal Relaxing Fluid and its Generalizations”, Spectral and Evolution Problems, 1994, no. 3, Abstracts of Lectures and Reports on the III Crimean Autumn Math. School-Sympos 3, 41–42
[4] D. A. Zakora, “The Problem on Small Motions of an Ideal Relaxing Fluid”, Dinam. Sist., 20 (2006), 104–112 | Zbl
[5] D. A. Zakora, “Small Motions of an Ideal Relaxing Rotating Fluid”, Dinam. Sist., 26 (2009), 31–42 | Zbl
[6] D. A. Zakora, “A Symmetric Model of Ideal Rotating Relaxing Fluid”, Ukr. Math. Bull., 7:2 (2010), 251–281 | MR
[7] A. A. Il'yshin and B. E. Pobedrya, Foundations of Mathematical Theory of Thermoviscoelasticity, Nauka, Moscow, 1970 (Russian)
[8] N. D. Kopachevsky, S. G. Krein, and Ngo Zui Kan, Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems, Nauka, Moscow, 1989 (Russian)
[9] O. A. Oleinik, G. A. Iosif'yan, and A. S. Shamaev, Mathematical Problems of Nonuniform Medi., Moscow State Univ., Moscow, 1970 (Russian)
[10] V. A. Solonnikov, “On General Boundary-Value Problems for Systems Which are Elliptic in the Sense of A. Douglis–L. Nirenberg.”, Part II, Trudy Math. V.A. Steklov Ins., 1966, 233–297 | MR | Zbl
[11] Yu. M. Berezansky, Expansions on Eigenfunctions of Self-Adjoint Operators, Naukova Dumka, Kiev, 1965 (Russian)
[12] S. G. Krein, Linear Differential Equations in Banach Space, Nauka, Moscow, 1967 (Russian) | MR
[13] J. Goldstein, Semigroups of Linear Operators and Applications, Vyscha Shkola, Kiev, 1965 | MR