@article{JMAG_2012_8_2_a4,
author = {A. Yampolsky},
title = {On geodesics of tangent bundle with fiberwise deformed {Sasaki} metric over {K\"ahlerian} manifold},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {177--189},
year = {2012},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a4/}
}
TY - JOUR AU - A. Yampolsky TI - On geodesics of tangent bundle with fiberwise deformed Sasaki metric over Kählerian manifold JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2012 SP - 177 EP - 189 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a4/ LA - en ID - JMAG_2012_8_2_a4 ER -
A. Yampolsky. On geodesics of tangent bundle with fiberwise deformed Sasaki metric over Kählerian manifold. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 2, pp. 177-189. http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a4/
[1] S. Sasaki, “Geodesics on the Tangent Sphere Bundle over Space Forms”, J. Reine Angew. Math., 288 (1976), 106–120 | MR | Zbl
[2] K. Sato, “Geodesics on the Tangent Bundle over Space Forms”, Tensor, 32 (1978), 5–10 | MR | Zbl
[3] P.T. Nagy, “Geodesics on the Tangent Sphere Bundle of a Riemannian Manifold”, Geom. Dedic., 7:2 (1978), 233–244 | DOI | MR
[4] J. Cheeger and D. Gromoll, “On the Structure of Complete Manifolds of Nonnegative Curvature”, Ann. Math., 96 (1972), 413–443 | DOI | MR | Zbl
[5] M. Sekizawa, “Curvatures of Tangent Bundles with Cheeger–Gromoll Metric”, Tokyo J. Math., 14:2 (1991), 407–417 | DOI | MR | Zbl
[6] M.T.K. Abbassi and M. Sarih, “On Riemannian $g$-Natural Metrics of the Form $ag^s+ bg^h + cg^v $ on the Tangent Bundle of a Riemannian Manifold $(M, g)$”, Mediter. J. Math., 2 (2005), 19–43 | DOI | MR | Zbl
[7] V. Oproiu, “A Kähler Einstein Structure on the Tangent Bundle of a Space Form”, Int. J. Math. Math. Sci., 25 (2001), 183–195 | DOI | MR | Zbl
[8] M. Munteanu, Cheeger Gromoll Type Metrics on the Tangent Bundle, 2006, arXiv: math.DG/0610028 | MR
[9] O. Kowalski, “Curvature of the Induced Riemannian Metric on the Tangent Bundle of a Riemannian Manifold”, J. Reine Angew. Math., 250 (1971), 124–129 | MR | Zbl