The truncated Fourier operator. General results
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 2, pp. 158-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathcal F$ be the one dimensional Fourier–Plancherel operator and $E$ be a subset of the real axis. The truncated Fourier operator is the operator $\mathcal F_E$ of the form $\mathcal F_E=P_E\mathcal FP_E$, where $(P_Ex)(t)=\mathbf 1_E(t)x(t)$, and $\mathbf 1_E(t)$ is the indicator function of the set $E$. In the presented work, the basic properties of the operator $\mathcal F_E$ according to the set $E$ are discussed. Among these properties there are the following ones: 1) the operator $\mathcal F_E$ has a nontrivial null-space; 2) $\mathcal F_E$ is strictly contractive; 3) $\mathcal F_E$ is a normal operator; 4) $\mathcal F_E$ is a Hilbert–Schmidt operator; 5) $\mathcal F_E$ is a trace class operator.
@article{JMAG_2012_8_2_a3,
     author = {V. Katsnelson and R. Machluf},
     title = {The truncated {Fourier} operator. {General} results},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {158--176},
     year = {2012},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a3/}
}
TY  - JOUR
AU  - V. Katsnelson
AU  - R. Machluf
TI  - The truncated Fourier operator. General results
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2012
SP  - 158
EP  - 176
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a3/
LA  - en
ID  - JMAG_2012_8_2_a3
ER  - 
%0 Journal Article
%A V. Katsnelson
%A R. Machluf
%T The truncated Fourier operator. General results
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2012
%P 158-176
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a3/
%G en
%F JMAG_2012_8_2_a3
V. Katsnelson; R. Machluf. The truncated Fourier operator. General results. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 2, pp. 158-176. http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a3/

[1] W.O. Amrein and A.M. Berthier, “On Support of $L^p$-Functions and their Fourier Transform”, J. Funct. Anal., 24 (1977), 258–267 | DOI | MR | Zbl

[2] St. Petersburg Math. J., 5:4 (1994), 663–717 | MR

[3] W.H.J. Fuchs, “On the Eigenvalues of an Integral Equation Arising in the Theory of Band-Limited Signals”, J. Math. Anal. Appl., 9 (1964), 317–330 | DOI | MR | Zbl

[4] Math. USSR Sbornik, 45:3 (1983), 397–410 | DOI | MR | Zbl

[5] P.P. Kargaev and A.L. Volberg, “Three Results Concerning the Support of Functions and Their Fourier Transform”, Indiana Univ. Math. J., 41:4 (1992), 1143–1164 | DOI | MR | Zbl

[6] Math. Soc., 18, AMS, Providence, R.I., 1969 | MR | Zbl | Zbl

[7] Russ. Math. Surveys, 32:1 (1977), 15–89 | DOI | MR | Zbl | Zbl

[8] B. Simon, Trace Ideals and their Applications, London Math. Soc. Lectures Notes Ser., Cambridge Univ. Press, Cambridge–New York, 1979 | MR | Zbl