On ideal amenability of banach algebras
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 2, pp. 135-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathfrak A$ be a Banach algebra. The Banach algebra $\mathfrak A$ is said to be ideally amenable if every continuous derivation from $\mathfrak A$ into $\mathcal I^*$ is inner, where $\mathcal I$ is a two-sided ideal of $\mathfrak A$. In this paper, we consider the ideal amenability of Banach algebras, and try to give some new results on the ideal amenability of Banach algebras and commutative Banach algebras.
@article{JMAG_2012_8_2_a1,
     author = {A. Jabbari},
     title = {On ideal amenability of banach algebras},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {135--143},
     year = {2012},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a1/}
}
TY  - JOUR
AU  - A. Jabbari
TI  - On ideal amenability of banach algebras
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2012
SP  - 135
EP  - 143
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a1/
LA  - en
ID  - JMAG_2012_8_2_a1
ER  - 
%0 Journal Article
%A A. Jabbari
%T On ideal amenability of banach algebras
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2012
%P 135-143
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a1/
%G en
%F JMAG_2012_8_2_a1
A. Jabbari. On ideal amenability of banach algebras. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 2, pp. 135-143. http://geodesic.mathdoc.fr/item/JMAG_2012_8_2_a1/

[1] F.F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, Berlin, 1973 | MR | Zbl

[2] B.E. Johnson, Cohomology in Banach Algebras, Mem. Amer. Math. Soc., 127, Providence, R.I., USA, 1972 | MR | Zbl

[3] W.G. Bade, P.C. Curtis, and H.G. Dales, “Amenability and Weak Amenability for Beurling and Lipschitz Algebras”, Proc. London Math. Soc., 55:2 (1987), 359–377 | DOI | MR | Zbl

[4] H.G. Dales, F. Ghahramani, and N. Grønbæk, “Derivations into Iterated Duals of Banach Algebras”, Studia Math., 128:1 (1998), 19–54 | MR | Zbl

[5] M.E. Gordji and T. Yazdanpanah, “Derivations into Duals of Ideals of Banach Algebras”, Proc. Indian Acad. Sci., 114:4 (2004), 339–403 | MR

[6] M.E. Gordji and S.A.R. Hosseiniun, “Ideal Amenability of Banach Algebras on Locally Compact Groups”, Proc. Indian Acad. Sci., 115:3 (2005), 319–325 | DOI | MR | Zbl

[7] A. Jabbari, “Ideal Amenability of Various Classes of Banach Algebras”, Acta Math. Vietnam, 36:3 (2011), 651–658 | MR | Zbl

[8] M.E. Gordji and R. Memarbashi, “Derivations into $n$-th Duals of Ideals of Banach Algebras”, Bull. Iran. Math. Soc., 34:1 (2008), 59–71 | MR | Zbl

[9] O.T. Mewomo, “On Ideal Amenability in Banach Algebras”, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 56:2 (2010), 273–278 | MR | Zbl

[10] H.G. Dales, A.T.M. Lau, and D. Strauss, Banach Algebras on Semigroups and their Compactifications, Mem. Amer. Math. Soc., 205, no. 966, 2010 | MR

[11] D.R. Sherbert, “The Structure of Ideals and Point Derivations in Banach Algebras of Lipschitz Functions”, Trans. Amer. Math. Soc., 111 (1964), 240–272 | DOI | MR | Zbl

[12] N. Weaver, Lipschitz Algebras, World Scientific Publishing Co. Pte Ltd., 1999 | MR | Zbl