Characterization of hyperbolic cylinders in a Lorentzian space form
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 1, pp. 79-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a characterization of the $n$-dimensional ($n\geq3$) hyperbolic cylinders in a Lorentzian space form. We show that the hyperbolic cylinders are the only complete space-like hypersurfaces in an $(n+1)$-dimensional Lorentzian space form $M^{n+1}_1(c)$ with non-zero constant mean curvature $H$ whose two distinct principal curvatures $\lambda$ and $\mu$ satisfy $\inf(\lambda-\mu)^2>0$ for $c\leq 0$ or $\inf(\lambda-\mu)^2>0$, $H^2\geq c$, for $c> 0$, where $\lambda$ is of multiplicity $n-1$ and $\mu$ of multiplicity $1$ and $\lambda<\mu$.
@article{JMAG_2012_8_1_a4,
     author = {Shichang Shu and Annie Yi Han},
     title = {Characterization of hyperbolic cylinders in a {Lorentzian} space form},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {79--89},
     year = {2012},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a4/}
}
TY  - JOUR
AU  - Shichang Shu
AU  - Annie Yi Han
TI  - Characterization of hyperbolic cylinders in a Lorentzian space form
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2012
SP  - 79
EP  - 89
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a4/
LA  - en
ID  - JMAG_2012_8_1_a4
ER  - 
%0 Journal Article
%A Shichang Shu
%A Annie Yi Han
%T Characterization of hyperbolic cylinders in a Lorentzian space form
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2012
%P 79-89
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a4/
%G en
%F JMAG_2012_8_1_a4
Shichang Shu; Annie Yi Han. Characterization of hyperbolic cylinders in a Lorentzian space form. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 1, pp. 79-89. http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a4/

[1] E. Calabi, “Examples of Bernstein Problems for Some Nonlinear Equations”, Proc. Symp. Pure Appl. Math., 15 (1970), 223–230 | DOI | MR | Zbl

[2] S.Y. Cheng and S.T. Yau, “Maximal Space-Like Hypersurfaces in the Lorentz–Minkowski Spaces”, Ann. Math., 104 (1976), 407–419 | DOI | MR | Zbl

[3] Y. Choquet-Bruhat, A.E. Fisher, and J.E. Marsden, Maximal Hypersurfaces and Positivity Mass, Proc. of the E. Fermi Summer School of the Italian Physical Society, ed. J. Ehlers, North-Holland, 1979

[4] T. Ishihara, “Maximal Space-Like Submanifolds of a Pseudo-Riemannian Space form of Constant Curvature”, Michigan Math. J., 35 (1988), 345–352 | DOI | MR | Zbl

[5] L. Cao and G. Wei, “A New Characterization of Hyperbolic Cylinder in Anti-de Sitter Space $H^{n+1}_1(-1)$”, J. Math. Anal. Appl., 329 (2007), 408–414 | DOI | MR | Zbl

[6] K. Akutagawa, “On Spacelike Hypersurfaces with Constant Mean Curvature in a de Sitter Space”, Math. Z., 196 (1987), 13–19 | DOI | MR | Zbl

[7] A.J. Goddard, “Some Remarks on the Existence of Spacelike Hypersurfaces of Constant Mean Curvature”, Math. Proc. Cambridge Phil. Soc., 82 (1977), 489–495 | DOI | MR | Zbl

[8] A. Brasil, Jr., A.G. Colares, and O. Palmas, “Complete Spacelike Hypersurfaces with Constant Mean Curvature in the de Sitter Space: A Gap Theorem”, Illinois J. Math., 47:3 (2003), 847–866 | MR | Zbl

[9] U-H. Ki, H-J. Kim, and H. Nakagawa, “On Space-Like Hypersurfaces with Constant Mean Curvature of a Lorentz Space Form”, Tokyo J. Math., 14 (1991), 205–215 | DOI | MR

[10] S. Montiel, “A Characterization of Hyperbolic Cylinders in the de Sitter Space”, Tôhoku Math. J., 48 (1996), 23–31 | DOI | MR | Zbl

[11] J. Ramanathan, “Complete Spacelike Hypersurfaces of Constant Mean Curvature in the de Sitter Space”, Indiana Univ. Math. J., 36 (1987), 349–359 | DOI | MR | Zbl

[12] S. Shu, “Complete Spacelike Hypersurfaces in a de Sitter Space”, Bull. Austral Math. Soc., 73 (2006), 9–16 | DOI | MR | Zbl

[13] R. Aiyama, “On Complete Space-Like Surfaces with Constant Mean Curvature in a Lorentzan 3-space form”, Tsukuba J. Math., 14 (1990), 353–370 | MR

[14] H. Alencar and M. do Carmo, “Hypersurfaces with Constant Mean Curvature in Spheres”, Proc. Amer. Math. Soc., 120 (1994), 1223–1229 | DOI | MR | Zbl

[15] M. Okumura, “Hypersurfaces and a Pinching Problem on the Second Fundamental Tensor”, Amer. J. Math., 96 (1974), 207–213 | DOI | MR | Zbl

[16] H. Omori, “Isometric Immersion of Riemmanian Manifolds”, J. Math. Soc. Jpn, 19 (1967), 205–214 | DOI | MR | Zbl

[17] S.T. Yau, “Harmonic Functions on Complete Riemmanian Manifolds”, Comm. Pure Appl., 28 (1975), 201–228 | DOI | MR | Zbl

[18] T. Otsuki, “Minimal Hypersurfaces in a Riemannian Manifold of Constant Curvature”, Amer. J. Math., 92 (1970), 145–173 | DOI | MR | Zbl