Elementary solutions of the Bernstein problem on two intervals
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 1, pp. 63-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

First we note that the best polynomial approximation to $|x|$ on the set, which consists of an interval on the positive half-axis and a point on the negative half-axis, can be given by means of the classical Chebyshev polynomials. Then we explore the cases when a solution of the related problem on two intervals can be given in elementary functions.
@article{JMAG_2012_8_1_a3,
     author = {F. Pausinger},
     title = {Elementary solutions of the {Bernstein} problem on two intervals},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {63--78},
     year = {2012},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a3/}
}
TY  - JOUR
AU  - F. Pausinger
TI  - Elementary solutions of the Bernstein problem on two intervals
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2012
SP  - 63
EP  - 78
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a3/
LA  - en
ID  - JMAG_2012_8_1_a3
ER  - 
%0 Journal Article
%A F. Pausinger
%T Elementary solutions of the Bernstein problem on two intervals
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2012
%P 63-78
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a3/
%G en
%F JMAG_2012_8_1_a3
F. Pausinger. Elementary solutions of the Bernstein problem on two intervals. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 1, pp. 63-78. http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a3/

[1] A. Eremenko and P. Yuditskii, “Polynomials of the Best Uniform Approximation to $sgn(x)$ on Two Intervals”, J. Anal. Math. (to appear) | MR

[2] A. Eremenko and P. Yuditskii, “Uniform Approximation of $sgn (x)$ by Polynomials and Entire Functions”, J. Anal. Math., 101 (2007), 313–324 | DOI | MR | Zbl

[3] S. Bernstein, “Sur la meilleure approximation de $|x|$ par des polynomes des degrés donnés”, Acta Math., 37:1 (1914), 1–57 | DOI | MR

[4] S. Bernstein, “On the Best Approximation of $|x|^p$ by Polynomials of Very High Degree”, Izv. Akad. Nauk SSSR, 2:2 (1938), 169–190 | Zbl

[5] D. Lubinsky, “On the Bernstein Constants of Polynomial Approximation”, Constr. Approx., 25:3 (2007), 303–366 | DOI | MR | Zbl

[6] N.I. Achieser, Vorlesungen über Approximationstheorie, Math. Lehrbücher, 2, Auflage, Band II Akademie Verlag, Berlin, 1967 | MR

[7] M.L. Sodin and P. Yuditskii, “Functions Deviating Least from Zero on Closed Subsets of the Real Axis”, St. Petersburg Math. J., 4:2 (1993), 201–249 | MR