Step-initial function to the mKdV equation: hyper-elliptic long-time asymptotics of the solution
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 1, pp. 38-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The modified Korteveg–de Vries equation on the line is considered. The initial function is a discontinuous and piece-wise constant step function, i.e. $q(x,0)=c_r$ for $x\geq0$ and $q(x,0)=c_l$ for $x<0$, where $c_l$, $c_r$ are real numbers which satisfy $c_l>c_r>0$. The goal of this paper is to study the asymptotic behavior of the solution of the initial-value problem as $t\to\infty$. Using the steepest descent method we deform the original oscillatory matrix Riemann–Hilbert problem to explicitly solvable model forms and show that the solution of the initial-value problem has different asymptotic behavior in different regions of the $xt$ plane. In the regions $x<-6c_l^2t+12c_r^2t$ and $x>4c_l^2t+2c_r^2t$ the main term of asymptotics of the solution is equal to $c_l$ and $c_r$, respectively. In the region $(-6c_l^2+12c_r^2)t the asymptotics of the solution takes the form of a modulated hyper-elliptic wave generated by an algebraic curve of genus 2.
@article{JMAG_2012_8_1_a2,
     author = {V. Kotlyarov and A. Minakov},
     title = {Step-initial function to the {mKdV} equation: hyper-elliptic long-time asymptotics of the solution},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {38--62},
     year = {2012},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a2/}
}
TY  - JOUR
AU  - V. Kotlyarov
AU  - A. Minakov
TI  - Step-initial function to the mKdV equation: hyper-elliptic long-time asymptotics of the solution
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2012
SP  - 38
EP  - 62
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a2/
LA  - en
ID  - JMAG_2012_8_1_a2
ER  - 
%0 Journal Article
%A V. Kotlyarov
%A A. Minakov
%T Step-initial function to the mKdV equation: hyper-elliptic long-time asymptotics of the solution
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2012
%P 38-62
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a2/
%G en
%F JMAG_2012_8_1_a2
V. Kotlyarov; A. Minakov. Step-initial function to the mKdV equation: hyper-elliptic long-time asymptotics of the solution. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 1, pp. 38-62. http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a2/

[1] C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, “Korteweg–de Vries Equation and Generalization. VI. Methods for Exact Solution”, Phys. Rev. Lett., 27 (1974), 97–133 | MR | Zbl

[2] S.P. Novikov, ed., Soliton Theory. Inverse Problem Method, Moscow, 1980 (Russian)

[3] M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981 | MR | Zbl

[4] P. Deift and X. Zhou, “A Steepest Descent Method for Oscillatory Riemann–Hilbert Problems”, Bull. Amer. Math. Soc. (N.S.), 26:1 (1992), 119–123 | DOI | MR | Zbl

[5] P. Deift and X. Zhou, “A Steepest Descent Method for Oscillatory Riemann–Hilbert Problems. Asymptotics for the MKdV equation”, Ann. Math., 137:2 (1993), 295–368 | DOI | MR | Zbl

[6] P. Deift, A. Its, and X. Zhou, “Long-Time Asymptotics for Integrable Nonlinear Wave Equations”, Important Developments in Soliton Theory, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1993, 181–204 | DOI | MR | Zbl

[7] A.S. Fokas and A.R. Its, “The Linearization of the Initial-Boundary Value Problem of the Nonlinear Schrodinger Equation”, SIAM J. Math. Anal., 27:3 (1996), 738–764 | DOI | MR | Zbl

[8] P. Deift, A.R. Its, and X. Zhou, “A Riemann–Hilbert Approach to Asymptotic Problems Arising in the Theory of Random Matrix Models, and Also in the Theory of Integrable Statistical Mechanics”, Ann. Math., 146 (1997), 149–235 | DOI | MR | Zbl

[9] A.S. Fokas, “A Unified Transform Method for Solving Linear and Certain Nonlinear PDEs”, Proc. Roy. Soc. London Ser. A, 453 (1997), 1411–1443 | DOI | MR | Zbl

[10] A.S. Fokas, A.R. Its, and L.-Y. Sung, “The Nonlinear Schrodinger Equation on the Half-Line”, Nonlinearity, 18 (2005), 1771–1822 | DOI | MR | Zbl

[11] A.S. Fokas and C.R. Menyuk, “Integrability and Self-Similarity in Transient Stimulated Raman Scattering”, J. Nonlinearity Sci., 9:1 (1999), 1–31 | DOI | MR | Zbl

[12] A. Boutet de Monvel, A.S. Fokas, and D.G. Shepelsky, “The mKdV Equation on the Half-Line”, J. Inst. Math. Jussieu, 3:2 (2004), 139–164 | DOI | MR | Zbl

[13] A. Boutet de Monvel, A.S. Fokas, and D.G. Shepelsky, “Integrable Nonlinear Evolution Equations on a Finite Interval”, Comm. Math. Phys., 263:1 (2006), 133–172 | DOI | MR | Zbl

[14] A. Boutet de Monvel, and D.G. Shepelsky, “Riemann–Hilbert Problem in the Inverse Scattering for the Camassa–Holm Equation on the Line”, MSRI Publications, 55 (2008), 53–75 | MR | Zbl

[15] A. Boutet de Monvel and D.G. Shepelsky, “Long-Time Asymptotics of the Camassa–Holm Equation on the Line”, Integrable Systems and Random Matricies. Contemporary Mathematics, 458 (2008), 99–116 | DOI | MR | Zbl

[16] E.A. Moscovchenko and V.P. Kotlyarov, “A New Riemann–Hilbert Problem in a Model of Stimulated Raman Scattering”, J. Phys. A.: Math. Gen., 39 (2006), 14591–14610 | DOI | MR

[17] E.A. Moscovchenko, “Simple Periodic Boundary Data and Riemann–Hilbert Problem for Integrable Model of the Stimulated Raman Scattering”, J. Math. Phys., Anal., Geom., 5:1 (2009), 82–103 | MR

[18] A. Boutet de Monvel and D.G. Shepelsky, “The Camassa–Holm Equation on the Half-Line: a Riemann–Hilbert Approach”, J. Geom. Anal., 18:2 (2008), 285–323 | DOI | MR | Zbl

[19] A. Boutet de Monvel, A.R. Its, and V.P. Kotlyarov, “Long-Time Asymptotics for the Focusing NLS Equation with Time-Periodic Boundary Condition on the Half-Line”, Comm. Math. Phys., 290:2 (2009), 479–522 | DOI | MR | Zbl

[20] A. Boutet de Monvel, V.P. Kotlyarov, and D.G. Shepelsky, “Decaying Long-Time Asymptotics for the Focusing NLS Equation with Periodic Boundary Condition”, Int. Math. Res. Notices, 3 (2009), 547–577 | MR | Zbl

[21] E.A. Moskovchenko and V.P. Kotlyarov, “Periodic Boundary Data for an Integrable Model of Stimulated Raman Scattering: Long-Time Asymptotic Behavior”, J. Phys. A, 43:5 (2010), 31 | DOI | MR | Zbl

[22] A. Boutet de Monvel, V. Kotlyarov, D.G. Shepelsky, and C. Zheng, “Initial Boundary Value Problems for Integrable Systems: Towards the Long Time Asymptotics”, Nonlinearity, 23:10 (2010), 2483–2499 | DOI | MR | Zbl

[23] V. Kotlyarov and A. Minakov, “Riemann–Hilbert Problem to the Modified Korteveg–de Vries Equation: Long-Time Dynamics of the Step-Like Initial Data”, J. Math. Phys., 51:9 (2010), 093506, 31 pp. | DOI | MR

[24] A. Boutet de Monvel, V.P. Kotlyarov, and D.G. Shepelsky, “Focusing NLS Equation: Long-Time Dynamics of Step-Like Initial Data”, Int. Math. Res. Notices, 7 (2011), 1613–1653 | MR | Zbl

[25] A. Minakov, “Asymptotics of Rarefaction Wave Solution to the MKdV Equation”, J. Math. Phys., Anal., Geom., 7:1 (2010), 59–86 | MR

[26] A. Minakov, “Long-Time Behavior of the Solution to the MKdV Equation with Step-Like Initial Data”, J. Phys. A, 44:8 (2011), 085206, 31 pp. | DOI | MR | Zbl

[27] P. Deift, A. Its, and X. Zhou, “A Riemann–Hilbert Approach to Asymptotic Problems Arising in the Theory of Random Matrix Models, and also in the Theory of Integrable Statistical Mechanics”, Ann. of Math. (2), 146:1 (1997), 149–235 | DOI | MR | Zbl

[28] P. Deift, T. Kricherbauer, K.T.-R. McLaughlin, S. Venakides, and X. Zhou, “Uniform Asymptotics for Polynomials Orthogonal with Respect to Varying Exponential Weights and Applications to Universality Questions in Random Matrix Theory”, Commun. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[29] P.M. Bleher, Lectures on Random Matrix Models. The Riemann–Hilbert approach, 2008, arXiv: 0801.1858 | MR | Zbl

[30] A.V. Gurevich and L.P. Pitaevskii, “Splitting of an Initial Jump in the KdV Equation”, JETP Letters, 17:5 (1973), 268–271 (Russian)

[31] E.Ya. Khruslov, “Asymptotic Behavior of the Solution of the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Initial Data”, Mat. Sb., 99:2 (1976), 261–281 (Russian) | MR | Zbl

[32] E.Ya. Khruslov and V.P. Kotlyarov, “Solitons of the Nonlinear Schrodinger Equation, which Are Generated by the Continuous Spectrum”, Teoret. Mat. Fiz., 68:2 (1986), 172–186 (Russian) | MR

[33] E.Ya. Khruslov and V.P. Kotlyarov, “Soliton Asymptotics of Nondecreasing Solutions of Nonlinear Completely Integrable Evolution Equations”, Spectral Operator Theory and Related Topics, Advances in Soviet Mathematics, 19, AMS, 1994, 129-180 | MR

[34] I.A. Anders, E.Ya. Khruslov, and V.P. Kotlyarov, “Curved Asymptotic Solitons of the Kadomtsev–Petviashvili Equation”, Teoret. Mat. Fiz., 99:1 (1994), 27–35 (Russian) | MR | Zbl

[35] V.B. Baranetsky and V.P. Kotlyarov, “Asymptotic Behavior in a Back Front Domain of the Solution of the KdV Equation with a “Step Type” Initial Condition”, Teoret. Mat. Fiz., 126:2 (2001), 214–227 (Russian) | DOI | MR

[36] A. Boutet de Monvel and V.P. Kotlyarov, “Generation of Asymptotic Solitons of the Nonlinear Schrodinger Equation by Boundary Data”, J. Math. Phys., 44:8 (2003), 3185–3215 | DOI | MR | Zbl

[37] E.Ya. Khruslov and V.P. Kotlyarov, “Generation of Asymptotic Solitons in an Integrable Model of Stimulated Raman Scattering by Periodic Boundary Data”, Mat. Fiz., Anal., Geom., 10:3 (2003), 366–384 | MR | Zbl

[38] I. Egorova, K. Grunert, and G. Teschl, “On the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-Gap Initial Data. I. Schwartz-type Perturbations”, Nonlinearity, 22:6 (2009), 1431–1457 | DOI | MR | Zbl

[39] I. Egorova, J. Michor, and G. Teschl, “Inverse Scattering Transform for the Toda Hierarchy with Steplike Finite-Gap Backgrounds”, J. Math. Phys., 500:10 (2009), 103521–103529 | DOI | MR

[40] R.F. Bikbaev, “The Influence of Viscosity on the Structure of Shock Waves in the MKdV Model”, J. Math. Sci., 77:2 (1995), 3042–3045 | DOI | MR

[41] R.F. Bikbaev, “Complex Whitham Deformations in Problems with “Integrable Instability””, Teoret. Mat. Fiz., 104:3 (1995), 393–419 | MR | Zbl

[42] R.F. Bikbaev, “Modulational Instability Stabilization Via Complex Whitham Deformations: Nonlinear Schrodinger Equation”, J. Math. Sci., 85:1 (1997), 1596–1604 | DOI | MR

[43] V.Yu. Novokshenov, “Time Asymptotics for Soliton Equations in Problems with Step Initial Conditions”, J. Math. Sci., 125:5 (2005), 717–749 | DOI | MR

[44] P.D. Lax, C.D. Levermore, and S. Venakides, “The Generation and Propagation of Oscillations in Dispersive Initial Value Problems and Their Limiting Behavior”, Important Developments in Soliton Theory, Springer Ser. Nonlinear Dynam., 1993, 205–241 | DOI | MR | Zbl

[45] P. Deift, S. Kamvissis, T. Kriecherbauer, and X. Zhou, “The Toda Rarefaction Problem”, Comm. Pure Appl. Math., 49:1 (1996), 35–83 | 3.0.CO;2-8 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[46] P. Deift, S. Venakides, and X. Zhou, “New Results in Small Dispersion KdV by an Extension of the Steepest Descent Method for Riemann–Hilbert Problems”, IMRN, 6 (1997), 286–299 | DOI | MR

[47] R. Buckingham and S. Venakides, “Long-Time Asymptotics of the Nonlinear Schrodinger Equation Shock Problem”, Comm. Pure Appl. Math., 60:9 (1997), 286–299 | MR

[48] A. Boutet de Monvel and V. Kotlyarov, “The Focusing Nonlinear Schrodinger Equation on the Quarter Plane with Time-Periodic Boundary Condition: a Riemann–Hilbert Approach”, J. Inst. Math. Jussieu, 6:4 (2007), 579–611 | DOI | MR | Zbl

[49] A. Boutet de Monvel, A.R. Its, and V. Kotlyarov, “Long-Time Asymptotics for the Focusing NLS Equation with Time-Periodic Boundary Condition”, C. R. Math. Acad. Sci. Paris, 345:11 (2007), 615–620 | DOI | MR | Zbl