@article{JMAG_2012_8_1_a1,
author = {M. Iscan and A. Gezer and A. Salimov},
title = {Some properties concerning curvature tensors of eight-dimensional {Walker} manifolds},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {21--37},
year = {2012},
volume = {8},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a1/}
}
TY - JOUR AU - M. Iscan AU - A. Gezer AU - A. Salimov TI - Some properties concerning curvature tensors of eight-dimensional Walker manifolds JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2012 SP - 21 EP - 37 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a1/ LA - en ID - JMAG_2012_8_1_a1 ER -
%0 Journal Article %A M. Iscan %A A. Gezer %A A. Salimov %T Some properties concerning curvature tensors of eight-dimensional Walker manifolds %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2012 %P 21-37 %V 8 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a1/ %G en %F JMAG_2012_8_1_a1
M. Iscan; A. Gezer; A. Salimov. Some properties concerning curvature tensors of eight-dimensional Walker manifolds. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 1, pp. 21-37. http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a1/
[1] A.G. Walker, “Canonical Form for a Rimannian Space with a Paralel Field of Null Planes”, Quart. J. Math. Oxford, 1:2 (1950), 69–79 | DOI | MR | Zbl
[2] Y. Matsushita, “Four-Dimensional Walker Metrics and Symplectic Structure”, J. Geom. Phys., 52 (2004), 89–99 | DOI | MR | Zbl
[3] Y. Matsushita, “Walker 4-Manifolds with Proper Almost Complex Structure”, J. Geom. Phys., 55 (2005), 385–398 | DOI | MR | Zbl
[4] Y. Petean, “Indefinite Kähler–Einstein Metrics on Compact Complex Surfaces”, Commun. Math. Phys., 189 (1997), 227–235 | DOI | MR | Zbl
[5] Y. Matsushita, S. Haze, and P.R. Law, “Almost Kähler–Einstein Structure on 8-Dimensional Walker Manifolds”, Monatsh. Math., 150 (2007), 41–48 | DOI | MR | Zbl
[6] A. Chudecki and M. Przanowski, “From Hyperheavenly Spaces to Walker and Osserman Spaces: I Class”, Class. Quantum. Grav., 25 (2008), 145010, 18 pp. | DOI | MR | Zbl
[7] A. Chudecki and M. Przanowski, “From Hyperheavenly Spaces to Walker and Osserman Spaces: II Class”, Class. Quantum. Grav., 25 (2008), 235019, 22 pp. | DOI | MR | Zbl
[8] J. Davidov, J.C. Díaz-Ramos, E. García-Río, Y. Matsushita, O. Muškarov, and R. Vázquez-Lorenzo, “Almost Kähler Walker 4-Manifolds”, J. Geom. Phys., 57 (2007), 1075–1088 | DOI | MR | Zbl
[9] J. Davidov, J.C. Díaz-Ramos, E. García-Río, Y. Matsushita, O. Muškarov, and R. Vázquez-Lorenzo, “Hermitian–Walker 4-Manifolds”, J. Geom. Phys., 58 (2008), 307–323 | DOI | MR | Zbl
[10] E. García-Río, S. Haze, N. Katayama, Y. Matsushita, “Symplectic, Hermitian and Kähler Structures on Walker 4-Manifolds”, J. Geom., 90 (2008), 56–65 | DOI | MR | Zbl
[11] M. Chaichi, E. García-Río, and Y. Matsushita, “Curvature Properties of Four-Dimensional Walker Metrics”, Class. Quantum. Grav., 22:3 (2005), 559–577 | DOI | MR | Zbl
[12] V.V. Vishnevskii, A.P. Shirokov, and V.V. Shurygin, Spaces over algebras, Kazanskii Gosudarstvennyi Universitet, Kazan, 1985 (Russian) | MR
[13] A. Derdzinski, “On Compact Riemannian Manifolds with Harmonic Curvature”, Math. Ann., 259 (1982), 145–152 | DOI | MR | Zbl
[14] K. Yano and S. Ishihara, Tangent and Cotangent Bundle, Marcel Dekker, New York, 1973 | MR | Zbl
[15] E. García-Río, D.N. Kupeli, M.E. Vázquez-Abal, R. Vázquez-Lorenzo, “Affine Osserman Connections and Their Riemann Extensions”, Diff. Geom. Appl., 11:2 (1999), 145–153 | DOI | MR | Zbl