Some properties concerning curvature tensors of eight-dimensional Walker manifolds
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 1, pp. 21-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main purpose of the present paper is to study conditions for the eight-dimensional Walker manifolds which admit a field of parallel null 4-planes to be Einsteinian, Osserman, or locally conformally flat.
@article{JMAG_2012_8_1_a1,
     author = {M. Iscan and A. Gezer and A. Salimov},
     title = {Some properties concerning curvature tensors of eight-dimensional {Walker} manifolds},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {21--37},
     year = {2012},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a1/}
}
TY  - JOUR
AU  - M. Iscan
AU  - A. Gezer
AU  - A. Salimov
TI  - Some properties concerning curvature tensors of eight-dimensional Walker manifolds
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2012
SP  - 21
EP  - 37
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a1/
LA  - en
ID  - JMAG_2012_8_1_a1
ER  - 
%0 Journal Article
%A M. Iscan
%A A. Gezer
%A A. Salimov
%T Some properties concerning curvature tensors of eight-dimensional Walker manifolds
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2012
%P 21-37
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a1/
%G en
%F JMAG_2012_8_1_a1
M. Iscan; A. Gezer; A. Salimov. Some properties concerning curvature tensors of eight-dimensional Walker manifolds. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2012) no. 1, pp. 21-37. http://geodesic.mathdoc.fr/item/JMAG_2012_8_1_a1/

[1] A.G. Walker, “Canonical Form for a Rimannian Space with a Paralel Field of Null Planes”, Quart. J. Math. Oxford, 1:2 (1950), 69–79 | DOI | MR | Zbl

[2] Y. Matsushita, “Four-Dimensional Walker Metrics and Symplectic Structure”, J. Geom. Phys., 52 (2004), 89–99 | DOI | MR | Zbl

[3] Y. Matsushita, “Walker 4-Manifolds with Proper Almost Complex Structure”, J. Geom. Phys., 55 (2005), 385–398 | DOI | MR | Zbl

[4] Y. Petean, “Indefinite Kähler–Einstein Metrics on Compact Complex Surfaces”, Commun. Math. Phys., 189 (1997), 227–235 | DOI | MR | Zbl

[5] Y. Matsushita, S. Haze, and P.R. Law, “Almost Kähler–Einstein Structure on 8-Dimensional Walker Manifolds”, Monatsh. Math., 150 (2007), 41–48 | DOI | MR | Zbl

[6] A. Chudecki and M. Przanowski, “From Hyperheavenly Spaces to Walker and Osserman Spaces: I Class”, Class. Quantum. Grav., 25 (2008), 145010, 18 pp. | DOI | MR | Zbl

[7] A. Chudecki and M. Przanowski, “From Hyperheavenly Spaces to Walker and Osserman Spaces: II Class”, Class. Quantum. Grav., 25 (2008), 235019, 22 pp. | DOI | MR | Zbl

[8] J. Davidov, J.C. Díaz-Ramos, E. García-Río, Y. Matsushita, O. Muškarov, and R. Vázquez-Lorenzo, “Almost Kähler Walker 4-Manifolds”, J. Geom. Phys., 57 (2007), 1075–1088 | DOI | MR | Zbl

[9] J. Davidov, J.C. Díaz-Ramos, E. García-Río, Y. Matsushita, O. Muškarov, and R. Vázquez-Lorenzo, “Hermitian–Walker 4-Manifolds”, J. Geom. Phys., 58 (2008), 307–323 | DOI | MR | Zbl

[10] E. García-Río, S. Haze, N. Katayama, Y. Matsushita, “Symplectic, Hermitian and Kähler Structures on Walker 4-Manifolds”, J. Geom., 90 (2008), 56–65 | DOI | MR | Zbl

[11] M. Chaichi, E. García-Río, and Y. Matsushita, “Curvature Properties of Four-Dimensional Walker Metrics”, Class. Quantum. Grav., 22:3 (2005), 559–577 | DOI | MR | Zbl

[12] V.V. Vishnevskii, A.P. Shirokov, and V.V. Shurygin, Spaces over algebras, Kazanskii Gosudarstvennyi Universitet, Kazan, 1985 (Russian) | MR

[13] A. Derdzinski, “On Compact Riemannian Manifolds with Harmonic Curvature”, Math. Ann., 259 (1982), 145–152 | DOI | MR | Zbl

[14] K. Yano and S. Ishihara, Tangent and Cotangent Bundle, Marcel Dekker, New York, 1973 | MR | Zbl

[15] E. García-Río, D.N. Kupeli, M.E. Vázquez-Abal, R. Vázquez-Lorenzo, “Affine Osserman Connections and Their Riemann Extensions”, Diff. Geom. Appl., 11:2 (1999), 145–153 | DOI | MR | Zbl