Infinite dimensional spaces and cartesian closedness
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 3, pp. 225-284 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Infinite dimensional spaces frequently appear in physics; there are several approaches to obtain a good categorical framework for this type of space, and cartesian closedness of some category, embedding smooth manifolds, is one of the most requested condition. In the first part of the paper, we start from the failures presented by the classical Banach manifolds approach and we will review the most studied approaches focusing on cartesian closedness: the convenient setting, diffeology and synthetic differential geometry. In the second part of the paper, we present a general settings to obtain cartesian closedness. Using this approach, we can also easily obtain the possibility to extend manifolds using nilpotent infinitesimal points, without any need to have a background in formal logic.
@article{JMAG_2011_7_3_a2,
     author = {Paolo Giordano},
     title = {Infinite dimensional spaces and cartesian closedness},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {225--284},
     year = {2011},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2011_7_3_a2/}
}
TY  - JOUR
AU  - Paolo Giordano
TI  - Infinite dimensional spaces and cartesian closedness
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2011
SP  - 225
EP  - 284
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2011_7_3_a2/
LA  - en
ID  - JMAG_2011_7_3_a2
ER  - 
%0 Journal Article
%A Paolo Giordano
%T Infinite dimensional spaces and cartesian closedness
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2011
%P 225-284
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2011_7_3_a2/
%G en
%F JMAG_2011_7_3_a2
Paolo Giordano. Infinite dimensional spaces and cartesian closedness. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 3, pp. 225-284. http://geodesic.mathdoc.fr/item/JMAG_2011_7_3_a2/

[1] A. Kriegl, P. W. Michor, The Convenient Settings of Global Analysis, Mathematical Surveys and Monographs, 53, AMS, Providence, 1997 | DOI | MR | Zbl

[2] A. Frölicher, A. Kriegl, Linear spaces and differentiation theory, John Wiley and Sons, Chichester, 1988 | MR

[3] R. Lavendhomme, Basic Concepts of Synthetic Differential Geometry, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl

[4] I. Moerdijk, G. E. Reyes, Models for Smooth Infinitesimal Analysis, Springer, Berlin, 1991 | MR | Zbl

[5] A. Kock, Synthetic Differential Geometry, London Math. Soc. Lect. Note Ser., 51, Cambridge Univ. Press, 1981 | MR | Zbl

[6] P. Iglesias-Zemmour, Diffeology, July 9, 2008 http://www.math.huji.ac.il/~piz/documents/Diffeology.pdf | MR

[7] M. Laubinger, Differential Geometry in Cartesian Closed Categories of Smooth Spaces, PhD thesis, Louisiana State University, 2008

[8] M. Laubinger, “Diffeological Spaces”, Proyecciones, 25:2 (2006), 151–178 | DOI | MR | Zbl

[9] G. Hector, E. Macías-Virgós, “Diffeological Groups”, Research and Exposition in Mathematics, 25 (2002), 247–260 | MR | Zbl

[10] G. Hector, “Géométrie et topologie des espaces difféologiques”, Analysis and geometry in foliated manifolds (Santiago de Compostela, 1994), World Sci. Publ., River Edge–New York, 1995, 55–80 | MR | Zbl

[11] J. M. Souriau, “Groupes différentiels et physique mathématique”, Collection travaux en cours, Hermann, Paris, 1984, 75–79 | MR

[12] J. M. Souriau, “Groupes différentiels”, Lecture Notes in Mathematics, 836, Springer-Verlag, New York, 1981, 91–128 | DOI | MR

[13] A. Bastiani, “Applications différentiables et variétés différentiables de dimension infinie”, Journal d'Analyse Mathématique, XIII (1963), 1–114 | MR

[14] J. L. Bell, A Primer of Infinitesimal Analysis, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[15] R. Brown, Some Problems of Algebraic Topology, PhD thesis, Oxford, 1961

[16] R. Brown, “Ten Topologies for $x\times y$”, Q. J. Math. Oxf., 14 (1963), 303–319 | DOI | MR | Zbl

[17] R. Brown, “Function Spaces and Product Topologies”, Q. J. Math. Oxf., 15 (1964), 238–250 | DOI | MR | Zbl

[18] K. T. Chen, “On Differentiable Spaces”, Categories in Continuum Physics Volume, 1174, Springer-Verlag, Berlin, 1982, 38–42 | DOI | MR

[19] J. F. Colombeau, Différentiation et Bornologie, PhD thesis, Université de Bordeaux I, 1973 | MR

[20] A. Frölicher, W. Bucher, Calculus in Vector Spaces without Norm, Lecture Notes in Mathematics Volume, 30, Springer, Berlin, 1966 | MR | Zbl

[21] F. W. Lawvere, “Categorical Dynamics”, Topos theoretic methods in geometry, Various Publ. Ser., 30, Aarhus Univ., Aarhus, 1979, 1–28 | MR | Zbl

[22] F. W. Lawvere, S. H. Schanuel, W. R. Zame, On $c^\infty$-function Spaces, State Univ., New York, Buffalo, 1981 (to appear)

[23] U. Seip, “A convenient setting for smooth manifolds”, J. Pure and Appl. Algebra, 21 (1981), 279–305 | DOI | MR | Zbl

[24] N. E. Steenrod, “A Convenient Category for Topological Spaces”, Mich. Math. J., 14 (1967), 133–152 | DOI | MR | Zbl

[25] R. Vogt, “Convenient Categories of Topological Spaces for Homotopy Theory”, Arch. Math., 22 (1971), 545–555 | DOI | MR | Zbl

[26] J. Adamek, H. Herrlich, G. Strecker, Abstract and Concrete Categories, John Wiley and Sons, 1990 | MR | Zbl

[27] S. Mac Lane, Categories for the Working Mathematicians, Springer-Verlag, Berlin, 1971 | MR

[28] F. Borceux, Handbook of categorical algebra, v. 1, Encyclopedia of Mathematics and its Applications, 50, Basic category theory, Cambridge University Press, Cambridge, 1994, 345 pp. | MR

[29] M. Arbib, E. Manes, Arrows, Structures, and Functors: The Categorical Imperative, Academic Press, 1975 | MR | Zbl

[30] R. Abraham, J. E. Marsden, T. Ratiu, Manifolds, Tensors, Analysis and Applications, second edition, Springer-Verlag, 1988 | MR

[31] M. C. Abbati, A. Manià, Differential geometry of spaces of mappings with applications on classical field theory, Lecture Notes Series UTN LNS, Dipartimento di Matematica Università degli Studi di Trento, 2000

[32] J. M. Souriau, Structure des Systemes Dynamiques, Dunod, Paris, 1970 | MR | Zbl

[33] J. C. Baez, A. E. Hoffnung, Convenient Categories of Smooth Spaces, Oct. 2009, arXiv: 0807.1704v4[math.DG] | MR

[34] P. Giordano, Fermat reals: Nilpotent infinitesimals and infinite dimensional spaces, July 2009, arXiv: 0907.1872

[35] A. Kock, G. E. Reyes, Categorical distribution theory; heat equation, 2004, arXiv: math/0407242v1[math.CT]

[36] C. J. Isham, “Topos Theory and Consistent Histories: The Internal Logic of the Set of All Consistent Sets”, Inter. J. Theor. Phys., 36:4 (1997), 785–814 | DOI | MR | Zbl

[37] C. J. Isham, J. Butterfield, “Topos Perspective on the Kochen-Specker Theorem. I: Quantum States as Generalized Valuations”, Inter. J. Theor. Phys., 37:11 (1998), 2669–2733 | DOI | MR | Zbl

[38] C. J. Isham, J. Butterfield, “Some Possible Roles for Topos Theory in Quantum Theory and Quantum Gravity”, Found. Phys., 30:10 (2000), 1707–1735 | DOI | MR

[39] J. Butterfield, C. J. Isham, “A Topos Perspective on the Kochen-Specker Theorem. II: Conceptual Aspects, and Classical Analogues”, Inter. J. Theor. Phys., 38:3 (1999), 827–859 | DOI | MR | Zbl

[40] J. Butterfield, C. J. Isham, “Topos Perspective on the Kochen–Specker Theorem. IV: Interval Valuations”, Inter. J. Theor. Phys., 41:4 (2002), 613–639 | DOI | MR | Zbl

[41] J. Hamilton, C. J. Isham, J. Butterfield, “Topos Perspective on the Kochen–Specker Theorem. III: Von Neumann Algebras as Thebase Category”, Inter. J. Theor. Phys., 39:6) (2000), 1413–1436 | DOI | MR | Zbl

[42] I. Raptis, “Finitary Spacetime Sheaves”, Inter. J. Theor. Phys., 39:6 (2000), 1703–1716 | DOI | MR | Zbl

[43] A. Mallios, I. Raptis, “Finitary Spacetime Sheaves of Quantum Causal Sets: Curving Quantum Causality”, Inter. J. Theor. Phys., 40:11 (2001), 1885–1928 | DOI | MR | Zbl

[44] J. Król, “A Model for Spacetime: The Role of Interpretation in Some Grothendieck Topoi”, Found. Phys., 36:7 (2006), 1070–1098 | DOI | MR | Zbl

[45] C. Heunen, N. P. Landsman, B. Spitters, “A Topos for Algebraic Quantum Theory”, Commun. Math. Phys., 291:1 (2009), 63–110 | DOI | MR | Zbl

[46] A. K. Guts, “A Topos-Theoretic Approach to the Foundations of Relativity Theory”, Soviet Math. Dokl., 43:3 (1991), 904–907 | MR | Zbl

[47] E. B. Grinkevich, Synthetic Differential Geometry: A Way to Intuitionistic Models of General Relativity in Toposes, 1996, arXiv: gr-qc/9608013

[48] A. K. Guts, E. B. Grinkevich, Toposes in general theory of relativity, 1996, arXiv: gr-qc/9610073

[49] A. K. Guts, A. A. Zvyagintsev, Solution of the Vacuum Einstein Equations in Synthetic Differential Geometry of Kock-Lawvere, 1999, arXiv: physics/9909016

[50] A. K. Guts, A. A. Zvyagintsev, Interpretation of Intuitionistic Solution of the Vacuum Einstein Equations in Smooth Topos, 2000, arXiv: gr-qc/0001076 | MR

[51] F. W. Lawvere, “Toward the Description in a Smooth Topos of the Dynamically Possible Motions and Deformations of a Continuous Body”, Cahiers de Topologie et Géométrie Diff. Catégoriques, 21:4 (1980), 377–392 | MR | Zbl

[52] P. Giordano, “Infinitesimals without logic”, Russ. J. Math. Phys., 17:2 (2010), 159–191 | DOI | MR | Zbl

[53] S. Lang, Fundamentals of Differential Geometry, Graduate Texts in Mathematics, 191, Springer-Verlag, Berlin, 1999 | MR

[54] A. Friedman, Generalized Functions and Partial Differential Equations, Prentice-Hall, 1963 | MR

[55] D. W. Henderson, “Infinite-Dimensional Manifolds are Open Subsets of Hilbert Space”, Topology, 9 (1970), 25–33 | DOI | MR | Zbl

[56] H. Jarchow, Locally convex spaces, Teubner, Stuttgart, 1981 | MR | Zbl

[57] W. F. Donoghue, K. T. Smith, “On the Symmetry and Bounded Closure of Locally Convex Spaces”, Transact. Amer. Math. Soc., 73 (1952), 321–344 | DOI | MR

[58] H. H. Keller, “Räume stetiger multilinearer Abbildungen als Limesräume”, Math. Ann., 159 (1965), 259–270 | DOI | MR | Zbl

[59] B. Maissen, “Über Topologien im Endomorphismenraum eines topologischen Vektorraums”, Math. Ann., 151 (1963), 283–285 | DOI | MR | Zbl

[60] H. Omori, “On Banach Lie Groups Acting on Finite Dimensional Manifolds”, Tôhoku Math. J., 30 (1978), 223–250 | DOI | MR | Zbl

[61] H. Omori, P. de la Harpe, “About interactions between Banach Lie groups and finite dimensional manifolds”, J. Math. Kyoto Univ., 12 (1972), 543–570 | MR | Zbl

[62] H. Omori, Infinite-Dimensional Lie Groups, Translations of Mathematical Monographs, 158, AMS, Providence, RI, 1997 | MR | Zbl

[63] J. Hadamard, La Notion de différentielle dans l'enseignement, Technical report, Scripta Univ. Ab. 3, Bib Hierosolymitanarum, Jérusalem, 1923

[64] A. D. Michal, “Differential Calculus in Linear Topological Spaces”, Proc. Natl. Acad. Sci. USA, 24 (1938), 340–342 | DOI

[65] J. Boman, “Differentiability of a Function and of its Compositions with Functions of one Variable”, Math. Scand., 20 (1967), 249–268 | MR | Zbl

[66] R. S. Hamilton, “The Inverse Function Theorem of Nash and Moser”, Bull. Am. Math. Soc., 7 (1982), 65–222 | DOI | MR | Zbl

[67] A. Kock, “Convenient Vector Spaces Embed into the Cahiers Topos”, Cahiers de Topologie et Géométrie Diff. Catégoriques, 27 (1986), 3–17 | MR | Zbl

[68] A. Kock, G. E. Reyes, “Corrigendum and addenda to “vector spaces embed””, Cahiers de Topologie et Géométrie Diff. Catégoriques, 28 (1987), 99–110 | MR | Zbl

[69] H. Nishimura, A Much Larger Class of Frölicher Spaces than that of Convenient Vector Spaces may Embed into the Cahiers Topos, 2009, arXiv: 0908.0843v2[math.DG] | MR

[70] H. Nishimura, Microlinearity in Frölicher Spaces-Beyond the Regnant Philosophy of Manifolds, 2010, arXiv: 0912.0827v5[math.DG] | MR

[71] H. Nishimura, Differential Geometry of Microlinear Frölicher Spaces I, 2010, arXiv: 1002.3978v1[math.DG] | MR

[72] K. T. Chen, “Iterated Path Integral”, Bull. Amer. Math. Soc., 83:5 (1977), 831–879 | DOI | MR | Zbl

[73] M. V. Losik, “Fréchet Manifolds as Diffeological Spaces”, Rus. Math., 36:5 (1992), 31–37 | MR | Zbl

[74] M. V. Losik, “Categorical Differential Geometry Categorical Differential Geometry”, Cahiers de Topologie et Géométrie Diff. Catégoriques, 35:4 (1994), 274–290 | MR | Zbl

[75] C. Ehresmann, “Les Prolongements d'une Variété Différentiable: Calculus des Jets, Prolongement Principal”, C. R. Acad. Sc. Paris, 233 (1951), 598–600 | MR | Zbl

[76] A. Weil, “Théorie des Points Proches sur les Variétés Différentiables”, Colloque de Géometrie Différentielle, 1953, 111–117 | MR | Zbl

[77] M. Artin, A. Grothendieck, J. L. Verdier, Théorie des Topos et Cohomologie Étale des schemas, Lecture Notes in Mathematics, 269,270, Springer-Verlag, Berlin, 1972 | MR | Zbl

[78] S. Mac Lane, “The Genesis of Mathematical Structures, as Exemplified in the Work of Charles Ehresmann”, Cahiers de Topologie et Géométrie Diff. Catégoriques, 21:4 (1980), 353–365 | MR | Zbl

[79] A. Kriegl, P. W. Michor, “Product Preserving Functors of Infinite Dimensional Manifolds”, Arch. Math. (Brno), 32:4 (1996), 289–306 | MR | Zbl

[80] W. Bertram, Differential Geometry, Lie Groups and Symmetric Spaces over General Base Fields and Rings, AMS, Providence, 2008 | MR

[81] J. Gray, “The meeting of the Midwest Category Seminar in Zürich”, Reports of the Midwest Category Seminar, v. V, Lecture Notes in Mathematics, 195, Springer-Verlag, 1970

[82] S. Albeverio, J. E. Fenstad, R. Höegh-Krohn, T. Lindström, Nonstandard Methods in Stochastic Analysis and Mathematical Physics. Pure and Applied Mathematics., 2nd ed., Academic Press, Dover, 1988 | MR

[83] I. Kolár, P. W. Michor, J. Slovák, Natural operations in differential geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1993 | MR | Zbl

[84] J. Dugundji, Topology, Allyn and Bacon, Boston–Massachusetts, 1966 | MR | Zbl

[85] C. C. Wang, Mathematical Principles of Mechanics and Electromagnetism, Plenum Press, 1970

[86] P. Giordano, “The Ring of Fermat Reals”, Advances in Mathematics, 225:4 (2010), 2050–2075 | DOI | MR | Zbl

[87] A. Robinson, “Function Theory on Some Nonarchimedean Fields II: Papers in the Foundations of Mathematics”, Amer. Math. Monthly, 80:6 (1973), 87–109 | DOI | MR | Zbl

[88] A. H. Lightstone, A. Robinson, Nonarchimedean Fields and Asymptotic Expansions, North-Holland, Amsterdam, 1975 | MR | Zbl

[89] P. Giordano, “Nilpotent infinitesimals and synthetic differential geometry in classical logic”, Reuniting the Antipodes-Constructive and Nonstandard Views of the Continuum, Synthèse Library, 306, eds. U. Berger, H. Osswald, P. Schuster, Kluwer Academic, 2001, 75–92 | MR | Zbl