@article{JMAG_2011_7_3_a2,
author = {Paolo Giordano},
title = {Infinite dimensional spaces and cartesian closedness},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {225--284},
year = {2011},
volume = {7},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2011_7_3_a2/}
}
Paolo Giordano. Infinite dimensional spaces and cartesian closedness. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 3, pp. 225-284. http://geodesic.mathdoc.fr/item/JMAG_2011_7_3_a2/
[1] A. Kriegl, P. W. Michor, The Convenient Settings of Global Analysis, Mathematical Surveys and Monographs, 53, AMS, Providence, 1997 | DOI | MR | Zbl
[2] A. Frölicher, A. Kriegl, Linear spaces and differentiation theory, John Wiley and Sons, Chichester, 1988 | MR
[3] R. Lavendhomme, Basic Concepts of Synthetic Differential Geometry, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl
[4] I. Moerdijk, G. E. Reyes, Models for Smooth Infinitesimal Analysis, Springer, Berlin, 1991 | MR | Zbl
[5] A. Kock, Synthetic Differential Geometry, London Math. Soc. Lect. Note Ser., 51, Cambridge Univ. Press, 1981 | MR | Zbl
[6] P. Iglesias-Zemmour, Diffeology, July 9, 2008 http://www.math.huji.ac.il/~piz/documents/Diffeology.pdf | MR
[7] M. Laubinger, Differential Geometry in Cartesian Closed Categories of Smooth Spaces, PhD thesis, Louisiana State University, 2008
[8] M. Laubinger, “Diffeological Spaces”, Proyecciones, 25:2 (2006), 151–178 | DOI | MR | Zbl
[9] G. Hector, E. Macías-Virgós, “Diffeological Groups”, Research and Exposition in Mathematics, 25 (2002), 247–260 | MR | Zbl
[10] G. Hector, “Géométrie et topologie des espaces difféologiques”, Analysis and geometry in foliated manifolds (Santiago de Compostela, 1994), World Sci. Publ., River Edge–New York, 1995, 55–80 | MR | Zbl
[11] J. M. Souriau, “Groupes différentiels et physique mathématique”, Collection travaux en cours, Hermann, Paris, 1984, 75–79 | MR
[12] J. M. Souriau, “Groupes différentiels”, Lecture Notes in Mathematics, 836, Springer-Verlag, New York, 1981, 91–128 | DOI | MR
[13] A. Bastiani, “Applications différentiables et variétés différentiables de dimension infinie”, Journal d'Analyse Mathématique, XIII (1963), 1–114 | MR
[14] J. L. Bell, A Primer of Infinitesimal Analysis, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl
[15] R. Brown, Some Problems of Algebraic Topology, PhD thesis, Oxford, 1961
[16] R. Brown, “Ten Topologies for $x\times y$”, Q. J. Math. Oxf., 14 (1963), 303–319 | DOI | MR | Zbl
[17] R. Brown, “Function Spaces and Product Topologies”, Q. J. Math. Oxf., 15 (1964), 238–250 | DOI | MR | Zbl
[18] K. T. Chen, “On Differentiable Spaces”, Categories in Continuum Physics Volume, 1174, Springer-Verlag, Berlin, 1982, 38–42 | DOI | MR
[19] J. F. Colombeau, Différentiation et Bornologie, PhD thesis, Université de Bordeaux I, 1973 | MR
[20] A. Frölicher, W. Bucher, Calculus in Vector Spaces without Norm, Lecture Notes in Mathematics Volume, 30, Springer, Berlin, 1966 | MR | Zbl
[21] F. W. Lawvere, “Categorical Dynamics”, Topos theoretic methods in geometry, Various Publ. Ser., 30, Aarhus Univ., Aarhus, 1979, 1–28 | MR | Zbl
[22] F. W. Lawvere, S. H. Schanuel, W. R. Zame, On $c^\infty$-function Spaces, State Univ., New York, Buffalo, 1981 (to appear)
[23] U. Seip, “A convenient setting for smooth manifolds”, J. Pure and Appl. Algebra, 21 (1981), 279–305 | DOI | MR | Zbl
[24] N. E. Steenrod, “A Convenient Category for Topological Spaces”, Mich. Math. J., 14 (1967), 133–152 | DOI | MR | Zbl
[25] R. Vogt, “Convenient Categories of Topological Spaces for Homotopy Theory”, Arch. Math., 22 (1971), 545–555 | DOI | MR | Zbl
[26] J. Adamek, H. Herrlich, G. Strecker, Abstract and Concrete Categories, John Wiley and Sons, 1990 | MR | Zbl
[27] S. Mac Lane, Categories for the Working Mathematicians, Springer-Verlag, Berlin, 1971 | MR
[28] F. Borceux, Handbook of categorical algebra, v. 1, Encyclopedia of Mathematics and its Applications, 50, Basic category theory, Cambridge University Press, Cambridge, 1994, 345 pp. | MR
[29] M. Arbib, E. Manes, Arrows, Structures, and Functors: The Categorical Imperative, Academic Press, 1975 | MR | Zbl
[30] R. Abraham, J. E. Marsden, T. Ratiu, Manifolds, Tensors, Analysis and Applications, second edition, Springer-Verlag, 1988 | MR
[31] M. C. Abbati, A. Manià, Differential geometry of spaces of mappings with applications on classical field theory, Lecture Notes Series UTN LNS, Dipartimento di Matematica Università degli Studi di Trento, 2000
[32] J. M. Souriau, Structure des Systemes Dynamiques, Dunod, Paris, 1970 | MR | Zbl
[33] J. C. Baez, A. E. Hoffnung, Convenient Categories of Smooth Spaces, Oct. 2009, arXiv: 0807.1704v4[math.DG] | MR
[34] P. Giordano, Fermat reals: Nilpotent infinitesimals and infinite dimensional spaces, July 2009, arXiv: 0907.1872
[35] A. Kock, G. E. Reyes, Categorical distribution theory; heat equation, 2004, arXiv: math/0407242v1[math.CT]
[36] C. J. Isham, “Topos Theory and Consistent Histories: The Internal Logic of the Set of All Consistent Sets”, Inter. J. Theor. Phys., 36:4 (1997), 785–814 | DOI | MR | Zbl
[37] C. J. Isham, J. Butterfield, “Topos Perspective on the Kochen-Specker Theorem. I: Quantum States as Generalized Valuations”, Inter. J. Theor. Phys., 37:11 (1998), 2669–2733 | DOI | MR | Zbl
[38] C. J. Isham, J. Butterfield, “Some Possible Roles for Topos Theory in Quantum Theory and Quantum Gravity”, Found. Phys., 30:10 (2000), 1707–1735 | DOI | MR
[39] J. Butterfield, C. J. Isham, “A Topos Perspective on the Kochen-Specker Theorem. II: Conceptual Aspects, and Classical Analogues”, Inter. J. Theor. Phys., 38:3 (1999), 827–859 | DOI | MR | Zbl
[40] J. Butterfield, C. J. Isham, “Topos Perspective on the Kochen–Specker Theorem. IV: Interval Valuations”, Inter. J. Theor. Phys., 41:4 (2002), 613–639 | DOI | MR | Zbl
[41] J. Hamilton, C. J. Isham, J. Butterfield, “Topos Perspective on the Kochen–Specker Theorem. III: Von Neumann Algebras as Thebase Category”, Inter. J. Theor. Phys., 39:6) (2000), 1413–1436 | DOI | MR | Zbl
[42] I. Raptis, “Finitary Spacetime Sheaves”, Inter. J. Theor. Phys., 39:6 (2000), 1703–1716 | DOI | MR | Zbl
[43] A. Mallios, I. Raptis, “Finitary Spacetime Sheaves of Quantum Causal Sets: Curving Quantum Causality”, Inter. J. Theor. Phys., 40:11 (2001), 1885–1928 | DOI | MR | Zbl
[44] J. Król, “A Model for Spacetime: The Role of Interpretation in Some Grothendieck Topoi”, Found. Phys., 36:7 (2006), 1070–1098 | DOI | MR | Zbl
[45] C. Heunen, N. P. Landsman, B. Spitters, “A Topos for Algebraic Quantum Theory”, Commun. Math. Phys., 291:1 (2009), 63–110 | DOI | MR | Zbl
[46] A. K. Guts, “A Topos-Theoretic Approach to the Foundations of Relativity Theory”, Soviet Math. Dokl., 43:3 (1991), 904–907 | MR | Zbl
[47] E. B. Grinkevich, Synthetic Differential Geometry: A Way to Intuitionistic Models of General Relativity in Toposes, 1996, arXiv: gr-qc/9608013
[48] A. K. Guts, E. B. Grinkevich, Toposes in general theory of relativity, 1996, arXiv: gr-qc/9610073
[49] A. K. Guts, A. A. Zvyagintsev, Solution of the Vacuum Einstein Equations in Synthetic Differential Geometry of Kock-Lawvere, 1999, arXiv: physics/9909016
[50] A. K. Guts, A. A. Zvyagintsev, Interpretation of Intuitionistic Solution of the Vacuum Einstein Equations in Smooth Topos, 2000, arXiv: gr-qc/0001076 | MR
[51] F. W. Lawvere, “Toward the Description in a Smooth Topos of the Dynamically Possible Motions and Deformations of a Continuous Body”, Cahiers de Topologie et Géométrie Diff. Catégoriques, 21:4 (1980), 377–392 | MR | Zbl
[52] P. Giordano, “Infinitesimals without logic”, Russ. J. Math. Phys., 17:2 (2010), 159–191 | DOI | MR | Zbl
[53] S. Lang, Fundamentals of Differential Geometry, Graduate Texts in Mathematics, 191, Springer-Verlag, Berlin, 1999 | MR
[54] A. Friedman, Generalized Functions and Partial Differential Equations, Prentice-Hall, 1963 | MR
[55] D. W. Henderson, “Infinite-Dimensional Manifolds are Open Subsets of Hilbert Space”, Topology, 9 (1970), 25–33 | DOI | MR | Zbl
[56] H. Jarchow, Locally convex spaces, Teubner, Stuttgart, 1981 | MR | Zbl
[57] W. F. Donoghue, K. T. Smith, “On the Symmetry and Bounded Closure of Locally Convex Spaces”, Transact. Amer. Math. Soc., 73 (1952), 321–344 | DOI | MR
[58] H. H. Keller, “Räume stetiger multilinearer Abbildungen als Limesräume”, Math. Ann., 159 (1965), 259–270 | DOI | MR | Zbl
[59] B. Maissen, “Über Topologien im Endomorphismenraum eines topologischen Vektorraums”, Math. Ann., 151 (1963), 283–285 | DOI | MR | Zbl
[60] H. Omori, “On Banach Lie Groups Acting on Finite Dimensional Manifolds”, Tôhoku Math. J., 30 (1978), 223–250 | DOI | MR | Zbl
[61] H. Omori, P. de la Harpe, “About interactions between Banach Lie groups and finite dimensional manifolds”, J. Math. Kyoto Univ., 12 (1972), 543–570 | MR | Zbl
[62] H. Omori, Infinite-Dimensional Lie Groups, Translations of Mathematical Monographs, 158, AMS, Providence, RI, 1997 | MR | Zbl
[63] J. Hadamard, La Notion de différentielle dans l'enseignement, Technical report, Scripta Univ. Ab. 3, Bib Hierosolymitanarum, Jérusalem, 1923
[64] A. D. Michal, “Differential Calculus in Linear Topological Spaces”, Proc. Natl. Acad. Sci. USA, 24 (1938), 340–342 | DOI
[65] J. Boman, “Differentiability of a Function and of its Compositions with Functions of one Variable”, Math. Scand., 20 (1967), 249–268 | MR | Zbl
[66] R. S. Hamilton, “The Inverse Function Theorem of Nash and Moser”, Bull. Am. Math. Soc., 7 (1982), 65–222 | DOI | MR | Zbl
[67] A. Kock, “Convenient Vector Spaces Embed into the Cahiers Topos”, Cahiers de Topologie et Géométrie Diff. Catégoriques, 27 (1986), 3–17 | MR | Zbl
[68] A. Kock, G. E. Reyes, “Corrigendum and addenda to “vector spaces embed””, Cahiers de Topologie et Géométrie Diff. Catégoriques, 28 (1987), 99–110 | MR | Zbl
[69] H. Nishimura, A Much Larger Class of Frölicher Spaces than that of Convenient Vector Spaces may Embed into the Cahiers Topos, 2009, arXiv: 0908.0843v2[math.DG] | MR
[70] H. Nishimura, Microlinearity in Frölicher Spaces-Beyond the Regnant Philosophy of Manifolds, 2010, arXiv: 0912.0827v5[math.DG] | MR
[71] H. Nishimura, Differential Geometry of Microlinear Frölicher Spaces I, 2010, arXiv: 1002.3978v1[math.DG] | MR
[72] K. T. Chen, “Iterated Path Integral”, Bull. Amer. Math. Soc., 83:5 (1977), 831–879 | DOI | MR | Zbl
[73] M. V. Losik, “Fréchet Manifolds as Diffeological Spaces”, Rus. Math., 36:5 (1992), 31–37 | MR | Zbl
[74] M. V. Losik, “Categorical Differential Geometry Categorical Differential Geometry”, Cahiers de Topologie et Géométrie Diff. Catégoriques, 35:4 (1994), 274–290 | MR | Zbl
[75] C. Ehresmann, “Les Prolongements d'une Variété Différentiable: Calculus des Jets, Prolongement Principal”, C. R. Acad. Sc. Paris, 233 (1951), 598–600 | MR | Zbl
[76] A. Weil, “Théorie des Points Proches sur les Variétés Différentiables”, Colloque de Géometrie Différentielle, 1953, 111–117 | MR | Zbl
[77] M. Artin, A. Grothendieck, J. L. Verdier, Théorie des Topos et Cohomologie Étale des schemas, Lecture Notes in Mathematics, 269,270, Springer-Verlag, Berlin, 1972 | MR | Zbl
[78] S. Mac Lane, “The Genesis of Mathematical Structures, as Exemplified in the Work of Charles Ehresmann”, Cahiers de Topologie et Géométrie Diff. Catégoriques, 21:4 (1980), 353–365 | MR | Zbl
[79] A. Kriegl, P. W. Michor, “Product Preserving Functors of Infinite Dimensional Manifolds”, Arch. Math. (Brno), 32:4 (1996), 289–306 | MR | Zbl
[80] W. Bertram, Differential Geometry, Lie Groups and Symmetric Spaces over General Base Fields and Rings, AMS, Providence, 2008 | MR
[81] J. Gray, “The meeting of the Midwest Category Seminar in Zürich”, Reports of the Midwest Category Seminar, v. V, Lecture Notes in Mathematics, 195, Springer-Verlag, 1970
[82] S. Albeverio, J. E. Fenstad, R. Höegh-Krohn, T. Lindström, Nonstandard Methods in Stochastic Analysis and Mathematical Physics. Pure and Applied Mathematics., 2nd ed., Academic Press, Dover, 1988 | MR
[83] I. Kolár, P. W. Michor, J. Slovák, Natural operations in differential geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1993 | MR | Zbl
[84] J. Dugundji, Topology, Allyn and Bacon, Boston–Massachusetts, 1966 | MR | Zbl
[85] C. C. Wang, Mathematical Principles of Mechanics and Electromagnetism, Plenum Press, 1970
[86] P. Giordano, “The Ring of Fermat Reals”, Advances in Mathematics, 225:4 (2010), 2050–2075 | DOI | MR | Zbl
[87] A. Robinson, “Function Theory on Some Nonarchimedean Fields II: Papers in the Foundations of Mathematics”, Amer. Math. Monthly, 80:6 (1973), 87–109 | DOI | MR | Zbl
[88] A. H. Lightstone, A. Robinson, Nonarchimedean Fields and Asymptotic Expansions, North-Holland, Amsterdam, 1975 | MR | Zbl
[89] P. Giordano, “Nilpotent infinitesimals and synthetic differential geometry in classical logic”, Reuniting the Antipodes-Constructive and Nonstandard Views of the Continuum, Synthèse Library, 306, eds. U. Berger, H. Osswald, P. Schuster, Kluwer Academic, 2001, 75–92 | MR | Zbl