Asymmetrical bimodal distributions with screw modes
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 3, pp. 212-224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Boltzmann equation for the model of hard spheres is considered. Approximate bimodal solutions for the Boltzmann equation are built for the case when the Maxwellian modes are screws with different degrees of infinitesimality of angular velocities. Some sufficient conditions for the minimization of the uniform-integral remainder between the sides of the Boltzmann equation are obtained.
@article{JMAG_2011_7_3_a1,
     author = {V. D. Gordevskyy and E. S. Sazonova},
     title = {Asymmetrical bimodal distributions with screw modes},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {212--224},
     year = {2011},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2011_7_3_a1/}
}
TY  - JOUR
AU  - V. D. Gordevskyy
AU  - E. S. Sazonova
TI  - Asymmetrical bimodal distributions with screw modes
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2011
SP  - 212
EP  - 224
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2011_7_3_a1/
LA  - en
ID  - JMAG_2011_7_3_a1
ER  - 
%0 Journal Article
%A V. D. Gordevskyy
%A E. S. Sazonova
%T Asymmetrical bimodal distributions with screw modes
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2011
%P 212-224
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2011_7_3_a1/
%G en
%F JMAG_2011_7_3_a1
V. D. Gordevskyy; E. S. Sazonova. Asymmetrical bimodal distributions with screw modes. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 3, pp. 212-224. http://geodesic.mathdoc.fr/item/JMAG_2011_7_3_a1/

[1] C. Cercignani, The Boltzman Equation and its Applications, Springer, New York, 1988 | MR | Zbl

[2] M. N. Kogan, The Dynamics of a Rarefied Gas, Nauka, Moscow, 1967

[3] T. Carleman, Problems Mathematiques dans la Theorie Cinetique des Gas, Almqvist and Wiksells, Uppsala, 1957 | MR | Zbl

[4] V. D. Gordevskyy, “An Approximate Bimodal Solution of the Nonlinear Boltzman Equation for Hard Spheres”, Mat. Fiz., Anal., Geom., 2:2 (1995), 168–176 (Russian) | MR

[5] V. D. Gordevskyy, “A Criterium of Smallness of Difference for a Bimodal Solution of the Boltzmann Equation”, Mat. Fiz., Anal., Geom., 4:1–2 (1997), 46–58 (Russian) | MR

[6] V. D. Gordevskyy, “Some Classes of the Approximate Bimodal Solutions of the Nonlinear Boltzman Equation”, Integral Transforms and its Application for Boundary Problems, No 16, ed. M. P. Lenuk, In-t of Mathematics of Ukrainian Acad. Sci., Kyev, 1997, 54 (Ukrainian)

[7] V. D. Gordevskyy, “An Approximate Two-Flow Solution to the Boltzmann Equation”, Teor. Mat. Fiz., 114:1 (1998), 126–136 (Russian) | DOI | MR

[8] V. D. Gordevskyy, “Biflow Distributions with Screw Modes”, Teor. Mat. Fiz., 126:2 (2001), 283–300 (Russian) | DOI | MR | Zbl