On the solution of the Monge–Ampere equation $Z_{xx}Z_{yy}-Z_{xy}^{2}=f(x,y)$ with quadratic right side
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 3, pp. 203-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Monge–Ampere equation $Z_{xx}Z_{yy}-Z_{xy}^{2}=b_{20}x^{2}+b_{11}xy+b_{02}y^{2}+b_{00}$ we consider the question on the existence of a solution $Z(x,y)$ in the class of polynomials such that $Z=Z(x,y)$ is a graph of a convex surface. If $Z$ is a polynomial of odd degree, then the solution does not exist. If $Z$ is a polynomial of $4$-th degree and $4b_{20}b_{02}-b_{11}^{2}>0$, then the solution also does not exist. If $4b_{20}b_{02}-b_{11}^{2}=0$, then we have solutions.
@article{JMAG_2011_7_3_a0,
     author = {Yu. Aminov and K. Arslan and B. (Kili\c{c}) Bayram and B. Bulca and C. Murathan and G. \"Ozt\"urk},
     title = {On the solution of the {Monge{\textendash}Ampere} equation $Z_{xx}Z_{yy}-Z_{xy}^{2}=f(x,y)$ with quadratic right side},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {203--211},
     year = {2011},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2011_7_3_a0/}
}
TY  - JOUR
AU  - Yu. Aminov
AU  - K. Arslan
AU  - B. (Kiliç) Bayram
AU  - B. Bulca
AU  - C. Murathan
AU  - G. Öztürk
TI  - On the solution of the Monge–Ampere equation $Z_{xx}Z_{yy}-Z_{xy}^{2}=f(x,y)$ with quadratic right side
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2011
SP  - 203
EP  - 211
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2011_7_3_a0/
LA  - en
ID  - JMAG_2011_7_3_a0
ER  - 
%0 Journal Article
%A Yu. Aminov
%A K. Arslan
%A B. (Kiliç) Bayram
%A B. Bulca
%A C. Murathan
%A G. Öztürk
%T On the solution of the Monge–Ampere equation $Z_{xx}Z_{yy}-Z_{xy}^{2}=f(x,y)$ with quadratic right side
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2011
%P 203-211
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2011_7_3_a0/
%G en
%F JMAG_2011_7_3_a0
Yu. Aminov; K. Arslan; B. (Kiliç) Bayram; B. Bulca; C. Murathan; G. Öztürk. On the solution of the Monge–Ampere equation $Z_{xx}Z_{yy}-Z_{xy}^{2}=f(x,y)$ with quadratic right side. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 3, pp. 203-211. http://geodesic.mathdoc.fr/item/JMAG_2011_7_3_a0/

[1] K. Jörgens, “Über die Lösungen der Differentialgleichung $rt-s^2=1$”, Math. Ann., 127 (1954), 130–134 | DOI | MR | Zbl

[2] Yu. Volkov, S. Vladimirova, “Isometric immersions of Euclidean plane in the Lobachevski space”, Mat. Zametki, 10 (1971), 327–332 (Russian) | MR | Zbl

[3] E. Calabi, “Improper Affine Hyperspheres of Convex Type and a Generalizations of Theorem by K. Jörgens”, Michigan Math. J., 5 (1958), 105–126 | DOI | MR | Zbl

[4] A. V. Pogorelov, The Minkovski Multidimensional Problem, Skripta, Washington, 1978

[5] A. V. Pogorelov, “Multidimensional Monge–Ampere Equation”, Rev. Math. Math. Phys., 10:1 (1995), 1–10 | Zbl