Central Limit Theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 2, pp. 176-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider two classical ensembles of the random matrix theory: the Wigner matrices and sample covariance matrices, and prove Central Limit Theorem for linear eigenvalue statistics under rather weak (comparing with results known before) conditions on the number of derivatives of the test functions and also on the number of the entries moments. Moreover, we develop a universal method which allows one to obtain automatically the bounds for the variance of differentiable test functions, if there is a bound for the variance of the trace of the resolvent of random matrix. The method is applicable not only to the Wigner and sample covariance matrices, but to any ensemble of hermitian or real symmetric random matrices.
@article{JMAG_2011_7_2_a3,
     author = {M. Shcherbina},
     title = {Central {Limit} {Theorem} for linear eigenvalue statistics of the {Wigner} and sample covariance random matrices},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {176--192},
     year = {2011},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2011_7_2_a3/}
}
TY  - JOUR
AU  - M. Shcherbina
TI  - Central Limit Theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2011
SP  - 176
EP  - 192
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2011_7_2_a3/
LA  - en
ID  - JMAG_2011_7_2_a3
ER  - 
%0 Journal Article
%A M. Shcherbina
%T Central Limit Theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2011
%P 176-192
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2011_7_2_a3/
%G en
%F JMAG_2011_7_2_a3
M. Shcherbina. Central Limit Theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 2, pp. 176-192. http://geodesic.mathdoc.fr/item/JMAG_2011_7_2_a3/

[1] G. W. Anderson, O. Zeitouni, “A CLT for a Band Matrix Model”, Probab. Theory Related Fields, 134:2 (2006), 283–338 | DOI | MR | Zbl

[2] Z. Bai, J. W. Silverstein, “CLT for Linear Spectral Statistics of Large-Dimensional Sample Covariance Matrices”, Ann. Probab., 32:1A (2004), 553–605 | DOI | MR | Zbl

[3] Z. Bai, J. W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, Springer Series in Statistics, Second edition, Springer, New York, 2010 | DOI | MR

[4] S. W. Dharmadhikari, V. Fabian, K. Jogdeo, “Bounds on the Moments of Martingales”, Ann. Math. Statist., 39 (1968), 1719–1723 | DOI | MR | Zbl

[5] V. L. Girko, Theory of Stochastic Canonical Equations, v. I,II, Kluwer, Dordrecht, 2001

[6] A. Guionnet, “Large Deviations Upper Bounds and Central Limit Theorems for Non-Commutative Functionals of Gaussian Large Random Matrices”, Ann. Inst. H. Poincaré Probab. Statist., 38:3 (2002), 341–384 | DOI | MR | Zbl

[7] K. Johansson, “On Fluctuations of Eigenvalues of Random Hermitian Matrices”, Duke Math. J., 91 (1998), 151–204 | DOI | MR | Zbl

[8] A. Khorunzhy, B. Khoruzhenko, L. Pastur, “Random Matrices with Independent Entries: Asymptotic Properties of the Green Function”, J. Math. Phys., 37 (1996), 5033–5060 | DOI | MR | Zbl

[9] A. Lytova, L. Pastur, “Central Limit Theorem for Linear Eigenvalue Statistics of Random Matrices with Independent Entries”, Ann. Probab., 37:5 (2009), 1778–1840 | DOI | MR | Zbl

[10] V. Marchenko, L. Pastur, “The Eigenvalue Distribution in Some Ensembles of Random Matrices”, Math. USSR Sb., 1 (1967), 457–483 | DOI | Zbl

[11] L. Pastur, “On the Spectrum of Random Matrices”, Teor. Math. Phys., 10 (1972), 67–74 | DOI | MR

[12] Ya. Sinai, A. Soshnikov, “Central Limit Theorem for Traces of Large Random Symmetric Matrices with Independent Matrix Elements”, Bol. Soc. Brasil. Mat. (N.S.), 29 (1998), 1–24 | DOI | MR | Zbl

[13] A. Soshnikov, “Central Limit Theorem for Traces for Local Linear Statistics in Classical Compact Groups and Related Combinatorial Identities”, Ann. Probab., 28 (2000), 1353–1370 | DOI | MR | Zbl

[14] M. Shcherbina, B. Tirozzi, “Central Limit Theorem for Fluctuations of Linear Eigenvalue Statistics of Large Random Graphs”, J. Math. Phys., 51:2 (2010), 02523–02542 | DOI | MR

[15] E. P. Wigner, “On the Distribution of the Roots of Certain Symmetric Matrices”, Ann. Math., 1958, 325–327 | DOI | MR | Zbl