On stability of a unit ball in Minkowski space with respect to self-area
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 2, pp. 158-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main results of the paper are the following two statements. If the length of the unit circle $\partial B=\{\|x\|=1\}$ on Minkowski plane $M^2$ is equal to $O(B)=8(1-\varepsilon)$, $0\le\varepsilon\le 0.04$, then there exists a parallelogram which is centrally symmetric with respect to the origin $o$ and the sides of which lie inside an annulus $(1+18\varepsilon)^{-1}\le\|x\|\le 1$. If the area of the unit sphere $\partial B$ in the Minkowski space $M^n$, $n\ge 3$, is equal to $O(B)=2n\cdot\omega_{n-1}\cdot (1-\varepsilon)$, where $\varepsilon$ is a sufficiently small nonnegative constant and $\omega_n$ is a volume of the unit ball in $R^n$, then in the globular layer $(1+\varepsilon^\delta)^{-1}\le\|x\|\le 1$, $\delta=2^{-n}\cdot(n!)^{-2}$ it is possible to place a parallelepiped symmetric with respect the origin $o$.
@article{JMAG_2011_7_2_a2,
     author = {A. I. Shcherba},
     title = {On stability of a unit ball in {Minkowski} space with respect to self-area},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {158--175},
     year = {2011},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2011_7_2_a2/}
}
TY  - JOUR
AU  - A. I. Shcherba
TI  - On stability of a unit ball in Minkowski space with respect to self-area
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2011
SP  - 158
EP  - 175
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2011_7_2_a2/
LA  - en
ID  - JMAG_2011_7_2_a2
ER  - 
%0 Journal Article
%A A. I. Shcherba
%T On stability of a unit ball in Minkowski space with respect to self-area
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2011
%P 158-175
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2011_7_2_a2/
%G en
%F JMAG_2011_7_2_a2
A. I. Shcherba. On stability of a unit ball in Minkowski space with respect to self-area. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 2, pp. 158-175. http://geodesic.mathdoc.fr/item/JMAG_2011_7_2_a2/

[1] K. Leichtweiß, Konvexe Mengen, VEB Deutscher Verlag, Berlin, 1980 | MR | Zbl

[2] A. C. Thompson, Minkowski Geometry, Cambridge University Press, Cambridge, 1996 | MR

[3] H. Busemann, “Intrinsic Area”, Ann. Math., 48 (1947), 234–267 | DOI | MR

[4] H. Minkowski, “Volume und Oberfläche”, Ann. Math., 75 (1903), 447–495 | DOI | MR

[5] T. Bonnesen, W. Fenchel, Teorie der Konvexen Körper, Springer, 1934 ; New York, 1948 | MR | Zbl

[6] S. Golab, “Quelques Problèmes Métriques de la Géometrie de Minkowski”, Trav. l'Acad. Mines Cracovie, 6 (1932), 1–79 | MR | Zbl

[7] H. Busemann, C. M. Petty, “Problems on Convex Bodies”, Math. Scand., 4 (1956), 88–94 | MR | Zbl

[8] V. I. Diskant, “Estimates for Diameter and Width for the Isoperimetrix in Minkowski Geometry”, J. Math. Phys., Anal., Geom., 2:4 (2006), 388–395 | MR | Zbl

[9] A. D. Aleksandrov, Geometry and Applications. Selected Papers, v. 1, Nauka, Novosibirsk, 2006 (Russian) | MR

[10] V. I. Diskant, “Refinement of Isoperimetric Inequality and Stability Theorems in the Theory of Convex Bodies”, Tr. Inst. Mat., Siberian Branch USSR Acad. Sci., 14, 1989, 98–132 (Russian) | MR | Zbl

[11] V. I. Diskant, “Stability of Solutions of Minkowski and Brunn Equations”, Mat. Fiz., Anal., Geom., 6:3–4 (1999), 245–252 (Russian) | MR | Zbl