Growth of the Poisson–Stieltjes integral in a polydisc
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 2, pp. 141-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the growth of the value $M_{\infty}(r_1,\dots,r_n,v)=\max\{|v\ (z_1,\dots,z_n)|:|z_j|\le r_j\}$, $0\le r_j<1$ in terms of the modulus of continuity of a measure $\mu$, where the function $v$ is represented by the Poisson–Stieltjes integral.
@article{JMAG_2011_7_2_a1,
     author = {I. Chyzhykov and O. Zolota},
     title = {Growth of the {Poisson{\textendash}Stieltjes} integral in a~polydisc},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {141--157},
     year = {2011},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2011_7_2_a1/}
}
TY  - JOUR
AU  - I. Chyzhykov
AU  - O. Zolota
TI  - Growth of the Poisson–Stieltjes integral in a polydisc
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2011
SP  - 141
EP  - 157
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2011_7_2_a1/
LA  - en
ID  - JMAG_2011_7_2_a1
ER  - 
%0 Journal Article
%A I. Chyzhykov
%A O. Zolota
%T Growth of the Poisson–Stieltjes integral in a polydisc
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2011
%P 141-157
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2011_7_2_a1/
%G en
%F JMAG_2011_7_2_a1
I. Chyzhykov; O. Zolota. Growth of the Poisson–Stieltjes integral in a polydisc. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 2, pp. 141-157. http://geodesic.mathdoc.fr/item/JMAG_2011_7_2_a1/

[1] W. Rudin, Function Theory in Polydiscs, Math. Lecture Note Series, W. A. Benjamin, Inc., New York–Amsterdam, 1969 | MR | Zbl

[2] A. E. Djrbashian, F. A. Shamoyan, Topics in the Theory of $A^p_\alpha$ Spaces, Teubner-Texte zur Mathematik, 105, Leipzig, 1988 | MR | Zbl

[3] G. H. Hardy, J. E. Littlewood, “Some Properties of Fractional Integrals, II”, Math. Zeitschrift, 34 (1931–1932), 403–439 | DOI | MR

[4] P. L. Duren, Theory of $H^p$ Spaces, Academic Press, New York–London, 1970 | MR

[5] I. E. Chyzhykov, “Growth and Representation of Analytic and Harmonic Functions in the Unit Disc”, Ukr. Math. Bull., 3:1 (2006), 31–44 | MR | Zbl

[6] W. Nestlerode, M. Stoll, “Radial Limits of $n$-Subharmonic Functions in the Polydisc”, Trans. Amer. Math. Soc., 279:2 (1983), 691–703 | MR | Zbl

[7] A. Zygmund, Trigonometric Series, v. 1, Cambridge Univ. Press, Cambridge, 1959 | MR | Zbl