On transmission problem for Berger plates on an elastic base
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 1, pp. 96-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlinear transmission problem for a Berger plate on an elastic base is studied. The plate consists of thermoelastic and isothermal parts. The problem generates a dynamical system in a suitable Hilbert space. In the paper the existence of a compact global attractor is proved.
@article{JMAG_2011_7_1_a5,
     author = {M. Potomkin},
     title = {On transmission problem for {Berger} plates on an elastic base},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {96--102},
     year = {2011},
     volume = {7},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2011_7_1_a5/}
}
TY  - JOUR
AU  - M. Potomkin
TI  - On transmission problem for Berger plates on an elastic base
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2011
SP  - 96
EP  - 102
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2011_7_1_a5/
LA  - en
ID  - JMAG_2011_7_1_a5
ER  - 
%0 Journal Article
%A M. Potomkin
%T On transmission problem for Berger plates on an elastic base
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2011
%P 96-102
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2011_7_1_a5/
%G en
%F JMAG_2011_7_1_a5
M. Potomkin. On transmission problem for Berger plates on an elastic base. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 1, pp. 96-102. http://geodesic.mathdoc.fr/item/JMAG_2011_7_1_a5/

[1] P. Albano, “Carleman Estimates for the Euler–Bernoulli Plate Operator”, Electronic Journal of Diff. Eq., 53 (2000), 1–13 | MR

[2] M. Berger, “A New Approach to the Large Deflection of Plate”, J. Appl. Mech., 22 (1955), 465–472 | MR | Zbl

[3] F. Bucci, D. Toundykov, “Finite Dimensional Attractor for a Composite System of Wave/Plate Equations with Loclalised Damping”, Nonlinearity, 23 (2010), 2271–2306 | DOI | MR | Zbl

[4] Acta, Kharkov, 2002 http://www.emis.de/monographs/Chueshov/ | Zbl

[5] I. D. Chueshov, I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Memoirs of AMS, 912, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[6] I. D. Chueshov, I. Lasiecka, Von Karman Evolution Equations, Springer, 2010 | MR

[7] I. D. Chueshov, I. Lasiecka, D. Toundykov, “Long-Term Dynamics of Semilinear Wave Equation with Nonlinear Localized Interior Damping and a Source Term of Critical Exponent”, Discr. Cont. Dyn. Sys., 3 (2008), 459–510 | MR

[8] A. K. Khanmamedov, “Global Attractors for von Karman Equations with Nonlinear Dissipation”, J. Math. Anal. Appl., 318 (2006), 92–101 | DOI | MR | Zbl

[9] J. Lagnese, Boundary Stabilization of Thin Plates, SIAM Stud. Appl. Math., 10, SIAM, Philadelphia, PA, 1989 | MR

[10] A. Pazy, Semigroups of Linear Operators and Applications to PDE, Springer-Verlag, New York, 1983 | MR | Zbl

[11] M. Potomkin, A Nonlinear Transmission Problem For a Compound Plate with Thermoelastic Part, arXiv: 1003.3332 | MR

[12] J. E. M. Rivera, H. P. Oquendo, “A Transmission Problem for Thermoelastic Plates”, Quarterly of Applied Mathematics, 2 (2004), 273–293 | MR | Zbl