L- and M-structure in lush spaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 1, pp. 87-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X$ be a Banach space which is lush. It is shown that if a subspace of $X$ is either an L-summand or an M-ideal then it is also lush.
@article{JMAG_2011_7_1_a4,
     author = {E. Pipping},
     title = {L- and {M-structure} in lush spaces},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {87--95},
     year = {2011},
     volume = {7},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2011_7_1_a4/}
}
TY  - JOUR
AU  - E. Pipping
TI  - L- and M-structure in lush spaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2011
SP  - 87
EP  - 95
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2011_7_1_a4/
LA  - en
ID  - JMAG_2011_7_1_a4
ER  - 
%0 Journal Article
%A E. Pipping
%T L- and M-structure in lush spaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2011
%P 87-95
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2011_7_1_a4/
%G en
%F JMAG_2011_7_1_a4
E. Pipping. L- and M-structure in lush spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 1, pp. 87-95. http://geodesic.mathdoc.fr/item/JMAG_2011_7_1_a4/

[1] O. Toeplitz, “Das Algebraische Analogon zu Einem Satze von Fejér”, Math. Z., 2:1–2 (1918), 187–197 | DOI | MR | Zbl

[2] G. Lumer, “Semi-Inner-Product Spaces”, Trans. Amer. Math. Soc., 100 (1961), 29–43 | DOI | MR | Zbl

[3] F. L. Bauer, “On the Field of Values Subordinate to a Norm”, Numer. Math., 4 (1962), 103–113 | DOI | MR | Zbl

[4] M. Martín, “A Survey on the Numerical Index of a Banach Space”, Extracta Math., 15:2 (2000), 265–276, III Congress on Banach Spaces (Jarandilla de la Vera, 1998) | MR | Zbl

[5] V. Kadets, M. Martín, P. Payá, “Recent Progress and Open Questions on the Numerical Index of Banach Spaces”, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 100:1–2 (2006), 155–182 | MR | Zbl

[6] K. Boyko, V. Kadets, M. Martín, D. Werner, “Numerical Index of Banach Spaces and Duality”, Math. Proc. Cambridge Philos. Soc., 142:1 (2007), 93–102 | DOI | MR | Zbl

[7] K. Boyko, V. Kadets, M. Martín, J. Merí, V. Shepelska, “Lushness, Numerical Index One and Duality”, J. Math. Anal. Appl., 357:1 (2009), 15–24 | DOI | MR

[8] M. Martín, P. Payá, “Numerical Index of Vector-Valued Function Spaces”, Studia Math., 142:3 (2000), 269–280 | MR | Zbl

[9] R. E. Fullerton, “Geometrical Characterizations of Certain Function Spaces”, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem, 1961, 227–236 | MR | Zbl

[10] Å. Lima, “Intersection Properties of Balls in Spaces of Compact Operators”, Ann. Inst. Fourier (Grenoble), 28:3 (1978), 35–65 | DOI | MR | Zbl

[11] J. Lindenstrauss, “Extension of Compact Operators”, Mem. Amer. Math. Soc. No., 48 (1964) | MR | Zbl

[12] M. Martín, P. Payá, “On CL-Spaces and Almost CL-Spaces”, Ark. Mat., 42:1 (2004), 107–118 | DOI | MR | Zbl

[13] K. Boyko, V. Kadets, M. Martín, J. Merí, “Properties of Lush Spaces and Applications to Banach Spaces with Numerical Index 1”, Studia Math., 190:2 (2009), 117–133 | DOI | MR | Zbl

[14] P. Harmand, D. Werner, W. Werner, $M$-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Mathematics, 1547, Springer-Verlag, Berlin, 1993 | MR | Zbl

[15] J. Lindenstrauss, H. P. Rosenthal, “The $\mathcal L_p$ Spaces”, Israel J. Math., 7 (1969), 325–349 | DOI | MR | Zbl

[16] W. B. Johnson, H. P. Rosenthal, M. Zippin, “On Bases, Finite Dimensional Decompositions and Weaker Structures in Banach Spaces”, Israel J. Math., 9 (1971), 488–506 | DOI | MR | Zbl

[17] A. Martínez-Abejón, “An Elementary Proof of the Principle of Local Reflexivity”, Proc. Amer. Math. Soc., 127:5 (1999), 1397–1398 | DOI | MR | Zbl