@article{JMAG_2011_7_1_a3,
author = {A. Minakov},
title = {Asymptotics of rarefaction wave solution to the {mKdV} equation},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {59--86},
year = {2011},
volume = {7},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2011_7_1_a3/}
}
A. Minakov. Asymptotics of rarefaction wave solution to the mKdV equation. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 1, pp. 59-86. http://geodesic.mathdoc.fr/item/JMAG_2011_7_1_a3/
[1] A. V. Gurevich, L. P. Pitaevskii, “Splitting of an Initial Jump in the KdV Equation”, Letters to JETP, 17:5 (1973), 268–271 (Russian)
[2] E. Ya. Khruslov, “Asymptotic Behavior of the Solution of the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Initial Data”, Mat. Sb., 99:2 (1976), 261–281 (Russian) | MR | Zbl
[3] E. Ya. Khruslov, V. P. Kotlyarov, “Solitons of the Nonlinear Schrodinger Equation, which Are Generated by the Continuous Spectrum”, Teoret. Mat. Fiz., 68:2 (1986), 172–186 (Russian) | MR
[4] E. Ya. Khruslov, V. P. Kotlyarov, “Soliton Asymptotics of Nondecreasing Solutions of Nonlinear Completely Integrable Evolution Equations”, Operator Spectral Theory and Related Topics, Advances in Soviet Mathematics, 19, AMS, 1994, 129–180 | MR
[5] I. A. Anders, E. Ya. Khruslov, V. P. Kotlyarov, “Curved Asymptotic Solitons of the Kadomtsev–Petviashvili Equation”, Teoret. Mat. Fiz., 99:1 (1994), 27–35 (Russian) | MR | Zbl
[6] V. B. Baranetsky, V. P. Kotlyarov, “Asymptotic Behavior in a Back Front Domain of the Solution of the KdV Equation with a “Step Type” Initial Condition”, Teoret. Mat. Fiz., 126:2 (2001), 214–227 (Russian) | DOI | MR
[7] A. Boutet de Monvel, V. P. Kotlyarov, “Generation of Asymptotic Solitons of the Nonlinear Schrödinger Equation by Boundary Data. Integrability, Topological Solitons and beyond”, J. Math. Phys., 44:8 (2003), 3185–3215 | DOI | MR | Zbl
[8] E. Ya. Khruslov, V. P. Kotlyarov, “Generation of Asymptotic Solitons in an Integrable Model of Stimulated Raman Scattering by Periodic Boundary Data”, Mat. Fiz., Anal., Geom., 10:3 (2003), 364–186 | MR
[9] I. Egorova, K. Grunert, G. Teschl, “On the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-Gap Initial Data. I. Schwartz-type Perturbations”, Nonlinearity, 22:6 (2009), 1431–1457 | DOI | MR | Zbl
[10] I. Egorova, J. Michor, G. Teschl, “Inverse Scattering Transform for the Toda Hierarchy with Steplike Finite-Gap Backgrounds”, J. Math. Phys., 50:10 (2009), 103521 | DOI | MR | Zbl
[11] R. F. Bikbaev, “The Influence of Viscosity on the Structure of Shock Waves in the MKdV Model”, J. Math. Sci., 77:2 (1995), 3042–3045 | DOI | MR
[12] R. F. Bikbaev, “Complex Whitham Deformations in Problems with ‘`Integrable Instability’ ”, Teoret. Mat. Fiz., 104:3 (1995), 393–419 | MR | Zbl
[13] R. F. Bikbaev, “Modulational Instability Stabilization Via Complex Whitham Deformations: Nonlinear Schrodinger Equation”, J. Math. Sci., 85:1 (1997), 1596–1604 | DOI | MR
[14] V. Yu. Novokshenov, “Time Asymptotics for Soliton Equations in Problems with Step Initial Conditions”, J. Math. Sci., 125:5 (2005), 717–749 | DOI | MR
[15] S. P. Novikov (ed.), Soliton Theory. Inverse Problem Method, Moskow, 1980 (Russian)
[16] M. J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981 | MR | Zbl
[17] P. Deift, A. Its, X. Zhou, “Long-Time Asymptotics for Integrable Nonlinear Wave Equations”, Important Developments in Soliton Theory, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1993, 181–204 | DOI | MR | Zbl
[18] P. Deift, A. Its, X. Zhou, “A Riemann–Hilbert Approach to Asymptotic Problems Arising in the Theory of Random Matrix Models, and also in the Theory of Integrable Statistical Mechanics”, Ann. of Math.(2), 146:1 (1997), 149–235 | DOI | MR | Zbl