@article{JMAG_2011_7_1_a2,
author = {K. S. Khalina},
title = {Controllability problems for the non-homogeneous string that is fixed at the right-end point with {Dirichlet} boundary control at the left point},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {34--58},
year = {2011},
volume = {7},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2011_7_1_a2/}
}
TY - JOUR AU - K. S. Khalina TI - Controllability problems for the non-homogeneous string that is fixed at the right-end point with Dirichlet boundary control at the left point JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2011 SP - 34 EP - 58 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2011_7_1_a2/ LA - en ID - JMAG_2011_7_1_a2 ER -
%0 Journal Article %A K. S. Khalina %T Controllability problems for the non-homogeneous string that is fixed at the right-end point with Dirichlet boundary control at the left point %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2011 %P 34-58 %V 7 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_2011_7_1_a2/ %G en %F JMAG_2011_7_1_a2
K. S. Khalina. Controllability problems for the non-homogeneous string that is fixed at the right-end point with Dirichlet boundary control at the left point. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2011) no. 1, pp. 34-58. http://geodesic.mathdoc.fr/item/JMAG_2011_7_1_a2/
[1] I. Lasiecka, R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, v. 2, Abstract Hyperbolic-like Systems Over a Finite Time Horizon, Cambridge Univ. Press, Cambridge, 2000 | MR
[2] M. Gugat, G. Leugering, “$L^\infty$-Norm Minimal Control of the Wave Equation: on the Weakness of the Bang-Bang Principle”, ESAIM: COCV, 14 (2008), 254–283 | DOI | MR | Zbl
[3] M. Gugat, G. Leugering, “Solutions of $L^p$-Norm-Minimal Control Problems for the Wave Equation”, Comput. Appl. Math., 21 (2002), 227–244 | MR | Zbl
[4] M. Gugat, G. Leugering, G. Sklyar, “$L^p$-Optimal Boundary Control for the Wave Equation”, SIAM J. Control Optim., 44 (2005), 49–74 | DOI | MR | Zbl
[5] M. Gugat, “Optimal Boundary Control of a String to Rest in Finite Time with Continuous State”, Z. Angew. Math. Mech., 86 (2006), 134–150 | DOI | MR | Zbl
[6] L. V. Fardigola, K. S. Khalina, “Controllability Problems for the String Equation”, Ukr. Math. J., 59 (2007), 1040–1058 | DOI | MR | Zbl
[7] W. Krabs, G. Leugering, “On Boundary Controllability of One-Dimension Vibrating Systems by $W^{1,p}_0$-Controls for $p\in[0,\infty)$”, Math. Methods Appl. Sci., 17 (1994), 77–93 | DOI | MR | Zbl
[8] M. Negreanu, E. Zuazua, “Convergence of Multigrid Method for the Controllability of a 1-d Wave Equation”, C.R. Math. Acad. Sci. Paris, 338 (2004), 413–418 | DOI | MR | Zbl
[9] D. L. Russell, “Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions”, SIAM Review, 20 (1978), 639–739 | DOI | MR | Zbl
[10] O. Y. Emanuilov, “Boundary Controllability of Hyperbolic Equations”, Sib. Math. J., 41 (2000), 785–799 | DOI | MR | Zbl
[11] V. A. Il'in, E. I. Moiseev, “On a Boundary Control at One end of a Process Described by the Telegraph Equation”, Dokl. Math., 66 (2002), 407–410 | Zbl
[12] Math. USSR Izv., 35 (1990), 203–220 | DOI | MR | Zbl
[13] V. S. Vladimirov, Equations of Mathematical Physics, Imported Pubn., 1985 | MR | Zbl
[14] L. Schwartz, Théorie Des Distributions, v. I, II, Hermann, Paris, 1950, 1951 | MR | Zbl
[15] V. A. Marchenko, Sturm–Liouville Operators and Applications, Birkhauser Verlag, Basel–Boston–Stuttgart, 1986 | MR | Zbl
[16] L. V. Fardigola, V. A. Il'in, E. I. Moiseev, “Controllability Problems for the String Equation on a Half-axis With a Boundary Control Bounded by a Hard Constant”, SIAM J. Control Optim., 47 (2008), 2179–2199 | DOI | MR | Zbl
[17] AMS, Providence, R.I., 1977 | MR | Zbl
[18] V. D. Golovin, “On Biorthogonal Expansions in $L^2$ in Terms of the Linear Combinations of Exponentials”, Zapiski mekhanicheskogo facul'teta Khar'kovskogo gosudarstvennogo universiteta i Khar'kovskogo matematicheskogo obshchestva (The notes of mechanical faculty of Kharkov state university and Kharkov mathematical society), 30 (1964), 18–24 (Russian) | MR
[19] R. Courant, D. Gilbert, Methods of Mathematical Physics, v. 1, Wiley-Interscience, 1989
[20] B. Ya. Levin, I. V. Ostrovskii, “On Small Perturbations of the Set of Zeros of Functions of Sine Type”, Mathematics of the USSR. Izvestiya, 14 (1980), 79–102 | DOI
[21] I. M. Gelfand, G. E. Shilov, Generalized Functions, v. 3, Theory of Differential Equations, Academic Press, New York, 1964
[22] S. G. Gindikin, L. R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., Philadelphia, 1992 | MR | Zbl