@article{JMAG_2010_6_4_a4,
author = {S. Duplij and S. D. Sinel'shchikov},
title = {Classification of $U_q(\mathfrak{sl}_2)$-module algebra structures on the quantum plane},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {406--430},
year = {2010},
volume = {6},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2010_6_4_a4/}
}
TY - JOUR
AU - S. Duplij
AU - S. D. Sinel'shchikov
TI - Classification of $U_q(\mathfrak{sl}_2)$-module algebra structures on the quantum plane
JO - Žurnal matematičeskoj fiziki, analiza, geometrii
PY - 2010
SP - 406
EP - 430
VL - 6
IS - 4
UR - http://geodesic.mathdoc.fr/item/JMAG_2010_6_4_a4/
LA - ru
ID - JMAG_2010_6_4_a4
ER -
%0 Journal Article
%A S. Duplij
%A S. D. Sinel'shchikov
%T Classification of $U_q(\mathfrak{sl}_2)$-module algebra structures on the quantum plane
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2010
%P 406-430
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/JMAG_2010_6_4_a4/
%G ru
%F JMAG_2010_6_4_a4
S. Duplij; S. D. Sinel'shchikov. Classification of $U_q(\mathfrak{sl}_2)$-module algebra structures on the quantum plane. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 4, pp. 406-430. http://geodesic.mathdoc.fr/item/JMAG_2010_6_4_a4/
[1] E. Abe, Hopf Algebras, Cambridge Univ. Press, Cambridge, 1980 | MR | Zbl
[2] J. Alev, M. Chamarie, “Dérivations et Automorphismes de Quelques Algèbres Quantiques”, Comm. Algebra, 20 (1992), 1787–1802 | DOI | MR | Zbl
[3] V. G. Drinfeld, “On Almost Cocommutative Hopf Algebras”, Leningrad Math. J., 1 (1989), 321–342 | MR
[4] S. Duplij, F. Li, “Regular Solutions of Quantum Yang-Baxter Equation from Weak Hopf Algebras”, Czech. J. Phys., 51 (2001), 1306–1311 | DOI | MR | Zbl
[5] S. Duplij, S. Sinel'shchikov, “Quantum Enveloping Algebras with von Neumann Regular Cartan-like Generators and the Pierce Decomposition”, Commun. Math. Phys., 287 (2009), 769–785 | DOI | MR | Zbl
[6] A. Gonález-López, N. Kamran, P. Olver, “Quasi-exactly Solvable Lie Algebras of Differential Operators in two Complex Variables”, J. Phys. A: Math. Gen., 24 (1991), 3995–4078 | DOI | MR
[7] J. C. Jantzen, Lectures on Quantum Groups, Amer. Math. Soc., Providence, RI, 2005 | MR
[8] C. Kassel, Quantum Groups, Springer-Verlag, New York, 1995 | MR
[9] L. A. Lambe, D. E. Radford, Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach, Kluwer, Dordrecht, 1997 | MR
[10] F. Li, S. Duplij, “Weak Hopf Algebras and Singular Solutions of Quantum Yang–Baxter Equation”, Commun. Math. Phys., 225 (2002), 191–217 | DOI | MR | Zbl
[11] Yu. I. Manin, Topics in Noncommutative Differential Geometry, Princeton Univ. Press, Princeton, 1991 | MR | Zbl
[12] S. Montgomery, S. P. Smith, “Skew Derivations and $U_q(\mathfrak{sl}_2)$”, Israel J. Math., 72 (1990), 158–166 | DOI | MR | Zbl
[13] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969 | MR | Zbl