On singular limit and upper semicontinuous family of attractors of thermoviscoelastic Berger plate
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 3, pp. 305-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of partial differential equations with integral terms which take into account hereditary effects is considered. The system describes a behaviour of thermoviscoelastic plate with Berger's type of nonlinearity. The hereditary effect is taken into account both in the temperature variable and in the bending one. The main goal of the paper is to analyze the passage to the singular limit when memory kernels collapse into the Dirac mass. In particular, it is proved that the solutions to the system with memory are close in some sense to the solutions to the corresponding memory-free limiting system. Besides, the upper semicontinuity of the family of attractors with respect to the singular limit is obtained.
@article{JMAG_2010_6_3_a5,
     author = {M. Potomkin},
     title = {On singular limit and upper semicontinuous family of attractors of thermoviscoelastic {Berger} plate},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {305--336},
     year = {2010},
     volume = {6},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a5/}
}
TY  - JOUR
AU  - M. Potomkin
TI  - On singular limit and upper semicontinuous family of attractors of thermoviscoelastic Berger plate
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2010
SP  - 305
EP  - 336
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a5/
LA  - en
ID  - JMAG_2010_6_3_a5
ER  - 
%0 Journal Article
%A M. Potomkin
%T On singular limit and upper semicontinuous family of attractors of thermoviscoelastic Berger plate
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2010
%P 305-336
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a5/
%G en
%F JMAG_2010_6_3_a5
M. Potomkin. On singular limit and upper semicontinuous family of attractors of thermoviscoelastic Berger plate. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 3, pp. 305-336. http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a5/

[1] A. V. Babin, M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992 | MR | Zbl

[2] M. Berger, “A New Approach to the Large Deflection of Plate”, J. Appl. Mech., 22 (1955), 465–472 | MR | Zbl

[3] F. Bucci, I. D. Chueshov, “Long-Time Dynamics of a Coupled System of Nonlinear Wave and Thermoelastic Plate Equations”, Discrete Contin. Dyn. Syst., 22:3 (2008), 557–586 | DOI | MR | Zbl

[4] Acta, Kharkov, 2002 http://www.emis.de/monographs/Chueshov/ | Zbl

[5] I. D. Chueshov, I. Lasiecka, “Attractors and Long-Time Behaviour for von Karman Thermoelastic Plates”, 58, 2008, 195–241 | MR | Zbl

[6] I. D. Chueshov, I. Lasiecka, Long-Time Behaviour of Second Order Evolution Equations with Nonlinear Damping, AMS, 912, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[7] I. D. Chueshov, I. Lasiecka, “Long-Time Dynamics of a SemilinearWave Equation with Nonlinear Interior/Boundary Damping and Sources of Critical Exponents”, Cont. Math., 426 (2007), 153–192 | DOI | MR | Zbl

[8] I. D. Chueshov, I. Lasiecka, “Attractors for Second Order Evolution Equations with a Nonlinear Damping”, J. Dyn. DiR. Eq., 16 (2004), 469–512 | DOI | MR | Zbl

[9] M. Conti, V. Pata, M. Squassina, “Singular Limit of DiRerential Systems with Memory”, Discrete Contin. Dyn. Syst., 2005, Special Issue, 200–238 | MR

[10] C. M. Dafermos, “Asymptotic Stability in Viscoelasticity”, Arch. Rational Mech. Anal., 37 (1970), 297–308 | DOI | MR | Zbl

[11] M. Efendiev, A. Miranville, S. Zelik, “Exponential Attractors for a Nonlinear Reaction-DiRusion System in $\mathbb R^3$”, C.R. Acad. Sci. Paris. Ser. I: Math., 330 (2000), 713–718 | DOI | MR | Zbl

[12] T. Fastovska, “Upper Semicontinuous Attractors for 2D Mindlin–imoshenko Thermo-viscoelastic Model with Memory”, Nonlinear Anal., 71:10 (2009), 4833–4851 | DOI | MR | Zbl

[13] M. Grasselli, J. E. Munoz Rivera, V. Pata, “On the Energy Decay of the Linear Thermoelastic Plate with Memory”, J. Math. Anal. Appl., 309 (2005), 1–14 | DOI | MR | Zbl

[14] M. Grasselli, J. E. Munoz Rivera, M. Squassina, “Asymptotic Behavior of Thermoviscoelastic Plate with Memory Effects”, Asymptot. Anal., 63:1–2 (2009), 55–84 | MR | Zbl

[15] C. Giorgi, M. G. Naso, V. Pata, M. Potomkin, “Global Attractors for the Extensible Thermoelastic Beam System”, J. Diff. Eqs., 246 (2009), 3496–3517 | DOI | MR | Zbl

[16] M. E. Gurtin, V. Pipkin, “A General Theory of Heat Conduction with Finite Wave Speeds”, Arch. Rational Mech. Anal., 31 (1968), 113–126 | DOI | MR | Zbl

[17] Hao Wu, Long-time Behavior for a Nonlinear Plate Equation with Thermal Memory, preprint, 10 Apr 2008, arXiv: 0804.1806v1[math.AP] | MR

[18] J. Lagnese, Boundary Stabilization of Thin Plates, SIAM Stud. Appl. Math., 10, SIAM, Philadelphia, PA, 1989 | MR

[19] I. Lasiecka, R. Triggiani, Control Theory for PDEs, v. 1, Cambridge Univ. Press, Cambridge, 2000

[20] V. Pata, A. Zucchi, “Attractors for a Damped Hyperbolic Equation with Linear Memory”, Adv. Math. Sci. Appl., 11 (2001), 505–529 | MR | Zbl

[21] A. Pazy, Semigroups of Linear operators and applications to PDE, Springer-Verlag, New York, 1983 | MR | Zbl

[22] M. Potomkin, “Asymptotic Behavior of Thermoviscoelastic Berger Plate”, Commun. Pure Appl. Anal., 9 (2010), 161–192 | DOI | MR | Zbl

[23] G. Raugel, “Global Attractors in Partial Differential Equations”, Handbook of Dynamical Systems, v. 2, ed. B. Fiedler, Elsevier, Amsterdam, 2002 | Zbl

[24] J. Simon, “Compact Sets in the Space $L^p(0;T;B)$”, Ann. Mat. Pura ed Appl. Ser. 4, 148 (1987), 65–96 | MR

[25] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, Berlin–Heidelberg–New York, 1988 | MR | Zbl