@article{JMAG_2010_6_3_a5,
author = {M. Potomkin},
title = {On singular limit and upper semicontinuous family of attractors of thermoviscoelastic {Berger} plate},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {305--336},
year = {2010},
volume = {6},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a5/}
}
TY - JOUR AU - M. Potomkin TI - On singular limit and upper semicontinuous family of attractors of thermoviscoelastic Berger plate JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2010 SP - 305 EP - 336 VL - 6 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a5/ LA - en ID - JMAG_2010_6_3_a5 ER -
M. Potomkin. On singular limit and upper semicontinuous family of attractors of thermoviscoelastic Berger plate. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 3, pp. 305-336. http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a5/
[1] A. V. Babin, M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992 | MR | Zbl
[2] M. Berger, “A New Approach to the Large Deflection of Plate”, J. Appl. Mech., 22 (1955), 465–472 | MR | Zbl
[3] F. Bucci, I. D. Chueshov, “Long-Time Dynamics of a Coupled System of Nonlinear Wave and Thermoelastic Plate Equations”, Discrete Contin. Dyn. Syst., 22:3 (2008), 557–586 | DOI | MR | Zbl
[4] Acta, Kharkov, 2002 http://www.emis.de/monographs/Chueshov/ | Zbl
[5] I. D. Chueshov, I. Lasiecka, “Attractors and Long-Time Behaviour for von Karman Thermoelastic Plates”, 58, 2008, 195–241 | MR | Zbl
[6] I. D. Chueshov, I. Lasiecka, Long-Time Behaviour of Second Order Evolution Equations with Nonlinear Damping, AMS, 912, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl
[7] I. D. Chueshov, I. Lasiecka, “Long-Time Dynamics of a SemilinearWave Equation with Nonlinear Interior/Boundary Damping and Sources of Critical Exponents”, Cont. Math., 426 (2007), 153–192 | DOI | MR | Zbl
[8] I. D. Chueshov, I. Lasiecka, “Attractors for Second Order Evolution Equations with a Nonlinear Damping”, J. Dyn. DiR. Eq., 16 (2004), 469–512 | DOI | MR | Zbl
[9] M. Conti, V. Pata, M. Squassina, “Singular Limit of DiRerential Systems with Memory”, Discrete Contin. Dyn. Syst., 2005, Special Issue, 200–238 | MR
[10] C. M. Dafermos, “Asymptotic Stability in Viscoelasticity”, Arch. Rational Mech. Anal., 37 (1970), 297–308 | DOI | MR | Zbl
[11] M. Efendiev, A. Miranville, S. Zelik, “Exponential Attractors for a Nonlinear Reaction-DiRusion System in $\mathbb R^3$”, C.R. Acad. Sci. Paris. Ser. I: Math., 330 (2000), 713–718 | DOI | MR | Zbl
[12] T. Fastovska, “Upper Semicontinuous Attractors for 2D Mindlin–imoshenko Thermo-viscoelastic Model with Memory”, Nonlinear Anal., 71:10 (2009), 4833–4851 | DOI | MR | Zbl
[13] M. Grasselli, J. E. Munoz Rivera, V. Pata, “On the Energy Decay of the Linear Thermoelastic Plate with Memory”, J. Math. Anal. Appl., 309 (2005), 1–14 | DOI | MR | Zbl
[14] M. Grasselli, J. E. Munoz Rivera, M. Squassina, “Asymptotic Behavior of Thermoviscoelastic Plate with Memory Effects”, Asymptot. Anal., 63:1–2 (2009), 55–84 | MR | Zbl
[15] C. Giorgi, M. G. Naso, V. Pata, M. Potomkin, “Global Attractors for the Extensible Thermoelastic Beam System”, J. Diff. Eqs., 246 (2009), 3496–3517 | DOI | MR | Zbl
[16] M. E. Gurtin, V. Pipkin, “A General Theory of Heat Conduction with Finite Wave Speeds”, Arch. Rational Mech. Anal., 31 (1968), 113–126 | DOI | MR | Zbl
[17] Hao Wu, Long-time Behavior for a Nonlinear Plate Equation with Thermal Memory, preprint, 10 Apr 2008, arXiv: 0804.1806v1[math.AP] | MR
[18] J. Lagnese, Boundary Stabilization of Thin Plates, SIAM Stud. Appl. Math., 10, SIAM, Philadelphia, PA, 1989 | MR
[19] I. Lasiecka, R. Triggiani, Control Theory for PDEs, v. 1, Cambridge Univ. Press, Cambridge, 2000
[20] V. Pata, A. Zucchi, “Attractors for a Damped Hyperbolic Equation with Linear Memory”, Adv. Math. Sci. Appl., 11 (2001), 505–529 | MR | Zbl
[21] A. Pazy, Semigroups of Linear operators and applications to PDE, Springer-Verlag, New York, 1983 | MR | Zbl
[22] M. Potomkin, “Asymptotic Behavior of Thermoviscoelastic Berger Plate”, Commun. Pure Appl. Anal., 9 (2010), 161–192 | DOI | MR | Zbl
[23] G. Raugel, “Global Attractors in Partial Differential Equations”, Handbook of Dynamical Systems, v. 2, ed. B. Fiedler, Elsevier, Amsterdam, 2002 | Zbl
[24] J. Simon, “Compact Sets in the Space $L^p(0;T;B)$”, Ann. Mat. Pura ed Appl. Ser. 4, 148 (1987), 65–96 | MR
[25] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, Berlin–Heidelberg–New York, 1988 | MR | Zbl