@article{JMAG_2010_6_3_a2,
author = {L. Golinskii and A. Kheifets and F. Peherstorfer and P. Yuditskii},
title = {On a class of {Verblunsky} parameters that corresponds to {Guseinov's} class of {Jacobi} parameters},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {277--290},
year = {2010},
volume = {6},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a2/}
}
TY - JOUR AU - L. Golinskii AU - A. Kheifets AU - F. Peherstorfer AU - P. Yuditskii TI - On a class of Verblunsky parameters that corresponds to Guseinov's class of Jacobi parameters JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2010 SP - 277 EP - 290 VL - 6 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a2/ LA - en ID - JMAG_2010_6_3_a2 ER -
%0 Journal Article %A L. Golinskii %A A. Kheifets %A F. Peherstorfer %A P. Yuditskii %T On a class of Verblunsky parameters that corresponds to Guseinov's class of Jacobi parameters %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2010 %P 277-290 %V 6 %N 3 %U http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a2/ %G en %F JMAG_2010_6_3_a2
L. Golinskii; A. Kheifets; F. Peherstorfer; P. Yuditskii. On a class of Verblunsky parameters that corresponds to Guseinov's class of Jacobi parameters. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 3, pp. 277-290. http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a2/
[1] L. D. Faddeev, “On the Relation Between $S$-Matrix and Potential for the One-Dimensional Schrödinger Operator”, Dokl. Akad. Nauk SSSR, 121 (1958) (Russian) | MR | Zbl
[2] P. Deift, E. Trubowitz, “Inverse Scattering on the Line”, Comm. Pure Appl. Math., 32:2 (1979), 121–251 | DOI | MR | Zbl
[3] V. A. Marchenko, Operatory Shturma-Liuvillya i Ikh Prilozheniya, Izd-vo Naukova Dumka, Kiev, 1977 (Russian) | MR
[4] G. Sh. Guseinov, “The Determination of an Infinite Jacobi Matrix from the Scattering Data”, Soviet. Math. Dokl., 17 (1976), 596–600 | MR | Zbl
[5] G. Sh. Guseinov, “The Scattering Problem for an Infinite Jacobi Matrix”, Izv. Akad. Nauk ArmSSR. Ser. Mat., 12:5 (1977), 365–379 (Russian) | MR
[6] E. Ryckman, “A Spectral Equivalence for Jacobi Matrices”, J. Approx. Theory, 146:2 (2007), 252–266 | DOI | MR | Zbl
[7] E. Ryckman, “A Strong Szegő Theorem for Jacobi Matrices”, Comm. Math. Phys., 271:3 (2007), 791–820 | DOI | MR | Zbl
[8] E. Ryckman, “Erratum: A Strong Szegő Theorem for Jacobi Matrices”, Comm. Math. Phys., 275:2 (2007), 581–585 | DOI | MR
[9] E. Ryckman, Two Spectral Equivalences for Jacobi Matrices, PhD Theses, UCLA, Los Angeles, 2007 | MR
[10] J. Geronimo, K. Case, “Scattering Theory and Polynomials Orthogonal on the Unit Circle”, J. Math. Phys., 20:2 (1979), 299–310 | DOI | MR | Zbl
[11] J. Geronimo, K. Case, “Scattering Theory and Polynomials Orthogonal on the Real Line”, Trans. Amer. Math. Soc., 258:2 (1980), 467–494 | DOI | MR | Zbl
[12] B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory, American Mathematical Society Colloquium Publications, 54, American Mathematical Society, Providence, RI, 2005 | MR | Zbl