On a class of Verblunsky parameters that corresponds to Guseinov's class of Jacobi parameters
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 3, pp. 277-290 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{JMAG_2010_6_3_a2,
     author = {L. Golinskii and A. Kheifets and F. Peherstorfer and P. Yuditskii},
     title = {On a class of {Verblunsky} parameters that corresponds to {Guseinov's} class of {Jacobi} parameters},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {277--290},
     year = {2010},
     volume = {6},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a2/}
}
TY  - JOUR
AU  - L. Golinskii
AU  - A. Kheifets
AU  - F. Peherstorfer
AU  - P. Yuditskii
TI  - On a class of Verblunsky parameters that corresponds to Guseinov's class of Jacobi parameters
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2010
SP  - 277
EP  - 290
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a2/
LA  - en
ID  - JMAG_2010_6_3_a2
ER  - 
%0 Journal Article
%A L. Golinskii
%A A. Kheifets
%A F. Peherstorfer
%A P. Yuditskii
%T On a class of Verblunsky parameters that corresponds to Guseinov's class of Jacobi parameters
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2010
%P 277-290
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a2/
%G en
%F JMAG_2010_6_3_a2
L. Golinskii; A. Kheifets; F. Peherstorfer; P. Yuditskii. On a class of Verblunsky parameters that corresponds to Guseinov's class of Jacobi parameters. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 3, pp. 277-290. http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a2/

[1] L. D. Faddeev, “On the Relation Between $S$-Matrix and Potential for the One-Dimensional Schrödinger Operator”, Dokl. Akad. Nauk SSSR, 121 (1958) (Russian) | MR | Zbl

[2] P. Deift, E. Trubowitz, “Inverse Scattering on the Line”, Comm. Pure Appl. Math., 32:2 (1979), 121–251 | DOI | MR | Zbl

[3] V. A. Marchenko, Operatory Shturma-Liuvillya i Ikh Prilozheniya, Izd-vo Naukova Dumka, Kiev, 1977 (Russian) | MR

[4] G. Sh. Guseinov, “The Determination of an Infinite Jacobi Matrix from the Scattering Data”, Soviet. Math. Dokl., 17 (1976), 596–600 | MR | Zbl

[5] G. Sh. Guseinov, “The Scattering Problem for an Infinite Jacobi Matrix”, Izv. Akad. Nauk ArmSSR. Ser. Mat., 12:5 (1977), 365–379 (Russian) | MR

[6] E. Ryckman, “A Spectral Equivalence for Jacobi Matrices”, J. Approx. Theory, 146:2 (2007), 252–266 | DOI | MR | Zbl

[7] E. Ryckman, “A Strong Szegő Theorem for Jacobi Matrices”, Comm. Math. Phys., 271:3 (2007), 791–820 | DOI | MR | Zbl

[8] E. Ryckman, “Erratum: A Strong Szegő Theorem for Jacobi Matrices”, Comm. Math. Phys., 275:2 (2007), 581–585 | DOI | MR

[9] E. Ryckman, Two Spectral Equivalences for Jacobi Matrices, PhD Theses, UCLA, Los Angeles, 2007 | MR

[10] J. Geronimo, K. Case, “Scattering Theory and Polynomials Orthogonal on the Unit Circle”, J. Math. Phys., 20:2 (1979), 299–310 | DOI | MR | Zbl

[11] J. Geronimo, K. Case, “Scattering Theory and Polynomials Orthogonal on the Real Line”, Trans. Amer. Math. Soc., 258:2 (1980), 467–494 | DOI | MR | Zbl

[12] B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory, American Mathematical Society Colloquium Publications, 54, American Mathematical Society, Providence, RI, 2005 | MR | Zbl