Higher order differential operators with finite number of $\delta$-interactions in multivariate case
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 3, pp. 266-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A formula for calculating the defect number of a multi-center differential operator of higher order is obtained. The spectral properties of selfadjoint operators describing the finite number pointwise interactions are studied.
@article{JMAG_2010_6_3_a1,
     author = {E. H. Eyvazov},
     title = {Higher order differential operators with finite number of $\delta$-interactions in multivariate case},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {266--276},
     year = {2010},
     volume = {6},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a1/}
}
TY  - JOUR
AU  - E. H. Eyvazov
TI  - Higher order differential operators with finite number of $\delta$-interactions in multivariate case
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2010
SP  - 266
EP  - 276
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a1/
LA  - en
ID  - JMAG_2010_6_3_a1
ER  - 
%0 Journal Article
%A E. H. Eyvazov
%T Higher order differential operators with finite number of $\delta$-interactions in multivariate case
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2010
%P 266-276
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a1/
%G en
%F JMAG_2010_6_3_a1
E. H. Eyvazov. Higher order differential operators with finite number of $\delta$-interactions in multivariate case. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 3, pp. 266-276. http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a1/

[1] S. Albeverio, F. Gesztesy, Høegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Mir, Moscow, 1991 | MR

[2] M. Reed, B. Saimon, Methods of Modern Mathematical Physics, v. 2, Mir, Moscow, 1978 | MR

[3] F. A. Berezin, L. D. Faddeev, “Remark on a Schrödinger Equation with a Singular Potential”, DAN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl

[4] M. A. Naimark, Linear Differential Operators, Nauka, Moscow, 1969 | MR | Zbl

[5] S. Misohata, Theory of Partial Equations, Mir, Moscow, 1977

[6] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. 2, Mir, Moscow, 1986 | MR

[7] R. Narasimhan, Analysis on Real and Complex Manifolds, Mir, Moscow, 1971 | Zbl

[8] E. C. Svendsen, “The ERect of Submanifolds upon Essential Self-Adjointness and Defficiency Indices”, J. Math. Anal. Appl., 80 (1981), 551–565 | DOI | MR | Zbl

[9] E. H. Eyvazov, Investigation of Spectral Properties of Some Differential Operators with Generalized Coefficients, Thesis for PhD, Institute of Mathematics and Mechanics of AS AzerbSSR, Baku, 1979