Inverse wave spectral problem with discontinuous wave speed
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 3, pp. 255-265 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse problem for the Sturm–Liouville operator with complex periodic potential and positive discontinuous coefficients on the axis is studied. The main characteristics of the fundamental solutions and the spectrum of the operator are studied. The formulation of the inverse problem and a constructive procedure for its solution are given. The uniqueness theorem of the inverse problem is proven.
@article{JMAG_2010_6_3_a0,
     author = {R. F. Efendiev and H. D. Orudzhev},
     title = {Inverse wave spectral problem with discontinuous wave speed},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {255--265},
     year = {2010},
     volume = {6},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a0/}
}
TY  - JOUR
AU  - R. F. Efendiev
AU  - H. D. Orudzhev
TI  - Inverse wave spectral problem with discontinuous wave speed
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2010
SP  - 255
EP  - 265
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a0/
LA  - ru
ID  - JMAG_2010_6_3_a0
ER  - 
%0 Journal Article
%A R. F. Efendiev
%A H. D. Orudzhev
%T Inverse wave spectral problem with discontinuous wave speed
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2010
%P 255-265
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a0/
%G ru
%F JMAG_2010_6_3_a0
R. F. Efendiev; H. D. Orudzhev. Inverse wave spectral problem with discontinuous wave speed. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 3, pp. 255-265. http://geodesic.mathdoc.fr/item/JMAG_2010_6_3_a0/

[1] P. C. Sabatier, B. Dolveck-Guilpard, On Modelling Discontinuous Media. One-Dimensional Approximations, 29 (1998), 861–868 | MR

[2] P. C. Sabatier, “On Modelling Discontinuous Media. Three-Dimensional Scattering”, J. Math. Phys., 30 (1989), 2585–2598 | DOI | MR | Zbl

[3] F. Dupuy, P. C. Sabatier, “Discontinuous Media and Undetermined Scattering Problems”, J. Phys., A 25 (1992), 4253–4268 | MR | Zbl

[4] F. R. Molino, P. C. Sabatier, “Elastic Waves in Discontinuous Media: Three-Dimensional Scattering”, J. Math. Phys., 3 (1994), 4594–4635 | DOI | MR

[5] T. Aktosun, M. Klaus, C. van der Mee, “On the Riemann–Hilbert Problem for the One-Dimensional Schrödinger Equation”, J. Math. Phys., 34 (1993), 2651–2690 | DOI | MR | Zbl

[6] I. M. Guseinov, R. T. Pashaev, “On an Inverse Problem for a Scond-Order Differential Equation”, UMN, 57:3 (2002), 147–148 | DOI | MR | Zbl

[7] M. G. Gasymov, “Spectral Analysis of a Class Nonself-Adjoint Operator of the Second Order”, Funct. Anal. and its Appl., 14:1 (1980), 14–19 (Russian) | MR | Zbl

[8] L. A. Pastur, V. A. Tkachenko, “An Inverse Problem for One Class of one Dimensional Schrödinger's Operators with Complex Periodic Potentials”, MATH USSR IZV, 37:3 (1991), 611–629 | DOI | MR

[9] V. Guillemin, A. Uribe, “Hardy Functions and the Inverse Spectral Method”, Comm. Part. DiR. Eq., 8:13 (1983), 1455–1474 | DOI | MR | Zbl

[10] Theoret. Mat. Phys., 145 (2005), 1457–461 | DOI | DOI | MR | Zbl

[11] R. F. Efendiev, “Complete Solution of an Inverse Problem for one Class of the High Order Ordinary Differential Operators with Periodic Coefficients”, J. Mat. Fiz., Anal., Geom., 2 (2006), 73–86 | MR | Zbl

[12] R. F. Efendiev, “The Characterization Problem for One Class of Second Order Operator Pencil with Complex Periodic Coefficients”, Moscow Math. J., 7:1 (2007), 55–65 | MR | Zbl

[13] M. A. Naimark, Linear Differential Operators, Nauka, Moscow, 1969 (Russian) | MR | Zbl

[14] V. A. Marchenko, Sturm–Liouville Operators and Applications, Naukova Dumka, Kiev, 1977 (Russian) | MR