Uniqueness of solution of the inverse problem of scattering theory for a fourth order differential bundle with multiple characteristics
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 1, pp. 84-95
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{JMAG_2010_6_1_a6,
author = {E. G. Orudzhev},
title = {Uniqueness of solution of the inverse problem of scattering theory for a fourth order differential bundle with multiple characteristics},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {84--95},
year = {2010},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a6/}
}
TY - JOUR AU - E. G. Orudzhev TI - Uniqueness of solution of the inverse problem of scattering theory for a fourth order differential bundle with multiple characteristics JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2010 SP - 84 EP - 95 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a6/ LA - en ID - JMAG_2010_6_1_a6 ER -
%0 Journal Article %A E. G. Orudzhev %T Uniqueness of solution of the inverse problem of scattering theory for a fourth order differential bundle with multiple characteristics %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2010 %P 84-95 %V 6 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a6/ %G en %F JMAG_2010_6_1_a6
E. G. Orudzhev. Uniqueness of solution of the inverse problem of scattering theory for a fourth order differential bundle with multiple characteristics. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 1, pp. 84-95. http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a6/
[1] M. G. Gasymov, A. M. Maherramov, “The Existence of Transformation Operators for Higher Order Differential Equations that Depend Polynomially on a Parameter”, DAN SSSR, 235:2 (1977), 259–263 | MR
[2] M. G. Gasymov, A. M. Maherramov, Transformation Operators with Conditions at Infinity for a Class of Even Order Differential Bundles, preprint No 7, Inst. Phys. AS of Azerbaijan SSR, Baku, 1986, 29 pp. | MR
[3] E. G. Orudzhev, “Spectral Analysis of a Class of DiRerential Bundles with Multiple Characteristics”, Rep. NAS Azerbaijan, 58:5–6 (2002), 40–46
[4] V. A. Marchenko, Sturm-Liouville Operators and their Applications, Naukova Dumka, Kiev, 1977 | MR