Uniqueness of solution of the inverse problem of scattering theory for a fourth order differential bundle with multiple characteristics
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 1, pp. 84-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{JMAG_2010_6_1_a6,
     author = {E. G. Orudzhev},
     title = {Uniqueness of solution of the inverse problem of scattering theory for a fourth order differential bundle with multiple characteristics},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {84--95},
     year = {2010},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a6/}
}
TY  - JOUR
AU  - E. G. Orudzhev
TI  - Uniqueness of solution of the inverse problem of scattering theory for a fourth order differential bundle with multiple characteristics
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2010
SP  - 84
EP  - 95
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a6/
LA  - en
ID  - JMAG_2010_6_1_a6
ER  - 
%0 Journal Article
%A E. G. Orudzhev
%T Uniqueness of solution of the inverse problem of scattering theory for a fourth order differential bundle with multiple characteristics
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2010
%P 84-95
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a6/
%G en
%F JMAG_2010_6_1_a6
E. G. Orudzhev. Uniqueness of solution of the inverse problem of scattering theory for a fourth order differential bundle with multiple characteristics. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 1, pp. 84-95. http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a6/

[1] M. G. Gasymov, A. M. Maherramov, “The Existence of Transformation Operators for Higher Order Differential Equations that Depend Polynomially on a Parameter”, DAN SSSR, 235:2 (1977), 259–263 | MR

[2] M. G. Gasymov, A. M. Maherramov, Transformation Operators with Conditions at Infinity for a Class of Even Order Differential Bundles, preprint No 7, Inst. Phys. AS of Azerbaijan SSR, Baku, 1986, 29 pp. | MR

[3] E. G. Orudzhev, “Spectral Analysis of a Class of DiRerential Bundles with Multiple Characteristics”, Rep. NAS Azerbaijan, 58:5–6 (2002), 40–46

[4] V. A. Marchenko, Sturm-Liouville Operators and their Applications, Naukova Dumka, Kiev, 1977 | MR